scholarly journals Expression of P-170 glycoprotein sensitizes lymphoblastoid CEM cells to mitochondria-mediated apoptosis

2001 ◽  
Vol 355 (3) ◽  
pp. 587-595 ◽  
Author(s):  
Paola MATARRESE ◽  
Ugo TESTA ◽  
Roberto CAUDA ◽  
Stefano VELLA ◽  
Lucrezia GAMBARDELLA ◽  
...  

Multidrug resistance caused by P-glycoprotein (P-170) is a phenomenon by which cells exposed to a single drug acquire resistance to other structurally and functionally unrelated drugs. This is a widespread phenomenon described in vivo in the management of infectious as well as non-infectious diseases. Several in vitro models have been developed in order to evaluate physiopathological properties of P-170. Among these are P-170-expressing variants of the human T-lymphoblastoid CEM cell line called VBL100. As a general rule, drug resistance normally results in resistance to apoptosis induction. By contrast, a paradoxical activity is exerted in this cell model by the cytokine tumour necrosis factor-α (TNF-α), which is capable of inducing apoptosis in P-170-expressing variants better than in wild-type (wt) cells. In the present study we partially address the mechanisms underlying this activity. In fact, the susceptibility of VBL100 cells to TNF-α appears to be specifically due to the depolarization of their mitochondrial membrane, a key factor for apoptotic induction. The same was observed with staurosporine, a specific mitochondrion-mediated proapoptotic chemical probe. Conversely, other proapoptotic stimuli, such as Fas/CD95 or the anti-cancer drug etoposide, did induce significant cell death in wild type cells only. Thus, schematically, mitochondrially dependent stimuli appeared to be more effective in VBL100-cell killing, while ‘physiological’ stimuli showed the opposite behaviour. Importantly, under steady-state conditions, VBL100 cells displayed per se a mitochondrial membrane hyperpolarization that appeared strictly related to their high susceptibility to specific apoptotic stimuli. In conclusion, the study of a well-established cell model such as that represented by the wt/VBL CEM lymphoid cell line seems to suggest that the multidrug resistance phenotype can specifically sensitize cells towards ‘unphysiological’, mitochondria-associated cell death cascade or, in the same fashion, it could shift cells from type I (mainly plasma membrane-associated) towards type II (mainly mitochondrial membrane-associated) phenotype.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Zheng Zheng ◽  
Yan Chen ◽  
Yinzhou Wang ◽  
Yongkun Li ◽  
Qiong Cheng

AbstractCollagen-type I alpha 1 chain (COL1A1) and COL1A2 are abnormally expressed in intracranial aneurysm (IA), but their mechanism of action remains unclear. This study was performed to investigate the mechanism of COL1A1 and COL1A2 affecting the occurrence and rupture of IA. Quantitative real-time polymerase chain reaction was used to measure the expression of hsa-miR-513b-5p, COL1A1, COL1A2, TNF-α, IL-6, MMP2, MMP3, MMP9 and TIMP4 in patients with ruptured IA (RA) (n = 100), patients with un-ruptured IA (UA) (n = 100), and controls (n = 100). Then, human vascular smooth muscle cells (HASMCs) were cultured, and dual luciferase reporter assay was performed to analyse the targeting relationship between miR-513b-5p and COL1A1 or COL1A2. The effects of the miR-513b-5p mimic and inhibitor on the proliferation, apoptosis, and death of HASMC and the RIP1-RIP3-MLKL and matrix metalloproteinase pathways were also explored. The effect of silencing and over-expression of COL1A1 and COL1A2 on the role of miR-513b-5p were also evaluated. Finally, the effects of TNF-α on miR-513b-5p targeting COL1A1 and COL1A2 were tested. Compared with those in the control group, the serum mRNA levels of miR-513b-5p, IL-6 and TIMP4 were significantly decreased in the RA and UA groups, but COL1A1, COL1A2, TNF-α, IL-1β, MMP2, MMP3 and MMP9 were significantly increased (p < 0.05). Compared with those in the UA group, the expression of COL1A1, COL1A2, TNF-α, IL-1β and MMP9 was significantly up-regulated in the RA group (p < 0.05). Results from the luciferase reporter assay showed that COL1A1 and COL1A were the direct targets of miR-513b-5p. Further studies demonstrated that miR-513b-5p targeted COL1A1/2 to regulate the RIP1-RIP3-MLKL and MMP pathways, thereby enhancing cell death and apoptosis. Over-expression of COL1A1 or COL1A2, rather than silencing COL1A1/2, could improve the inhibitory effect of miR-513b-5p on cell activity by regulating the RIP1-RIP3-MLKL and MMP pathways. Furthermore, over-expression of miR-513b-5p and/or silencing COL1A1/2 inhibited the TNF-α-induced cell proliferation and enhanced the TNF-α-induced cell death and apoptosis. The mechanism may be related to the inhibition of collagen I and TIMP4 expression and promotion of the expression of RIP1, p-RIP1, p-RIP3, p-MLKL, MMP2 and MMP9. MiR-513b-5p targeted the inhibition of COL1A1/2 expression and affected HASMC viability and extracellular mechanism remodelling by regulating the RIP1-RIP3-MLKL and MMP pathways. This process might be involved in the formation and rupture of IA.


Cancers ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 375 ◽  
Author(s):  
Henry McCann ◽  
Charlotte Johnson ◽  
Rachel Errington ◽  
D. Davies ◽  
Elaine Dunlop ◽  
...  

To find new anti-cancer drug therapies, we wanted to exploit homeostatic vulnerabilities within Tuberous Sclerosis Complex 2 (TSC2)-deficient cells with mechanistic target of rapamycin complex 1 (mTORC1) hyperactivity. We show that nelfinavir and mefloquine synergize to selectively evoke a cytotoxic response in TSC2-deficient cell lines with mTORC1 hyperactivity. We optimize the concentrations of nelfinavir and mefloquine to a clinically viable range that kill cells that lack TSC2, while wild-type cells tolerate treatment. This new clinically viable drug combination causes a significant level of cell death in TSC2-deficient tumor spheroids. Furthermore, no cell recovery was apparent after drug withdrawal, revealing potent cytotoxicity. Transcriptional profiling by RNA sequencing of drug treated TSC2-deficient cells compared to wild-type cells suggested the cytotoxic mechanism of action, involving initial ER stress and an imbalance in energy homeostatic pathways. Further characterization revealed that supplementation with methyl pyruvate alleviated energy stress and reduced the cytotoxic effect, implicating energy deprivation as the trigger of cell death. This work underpins a critical vulnerability with cancer cells with aberrant signaling through the TSC2-mTORC1 pathway that lack flexibility in homeostatic pathways, which could be exploited with combined nelfinavir and mefloquine treatment.


2013 ◽  
Vol 63 (4) ◽  
pp. 493-503 ◽  
Author(s):  
Tiam Feridooni ◽  
Chris Mac Donald ◽  
Di Shao ◽  
Pollen Yeung ◽  
Remigius U. Agu

Abstract To investigate potential prevention or attenuation of anti- cancer drug induced cardiotoxicity using anti-ischemic drugs, a rat myoblast (H9c2) cell line was used as our in vitro cardiac model. Irinotecan and doxorubicin were found to be cytotoxic for the H9c2 cell line with IC50 of 30.69 ± 6.20 and 20.94 ± 6.05 mmol L-1, respectively. 5-Flurouracil and cladribine were not cytotoxic and thus IC50 could not be calculated. When 100 mmol L-1 doxorubicin was incubated for 72 hours with 50 mmol L-1 diltiazem, 100 mmol L-1 dexrazoxane and 100 mmol L-1 losartan, respectively, there was a 58.7 ± 10.2, 52.2 ± 11.7 and 44.7 ± 5.4 % reduction in cell death. When 200 mmol L-1 irinotecan was incubated for 72 hours with 100 mmol L-1 dexrazoxane, losartan and diltiazem, respectively, a 27.7 ± 6.9, 25.6 ± 5.1, and 19.1 ± 2.3 % reduction in cell death was observed. Our data suggests that losartan and diltiazem were as effective as dexrazoxane in protecting the cells against irinotecan- and doxorubicin-induced cell toxicity. These findings offer potential uses of anti- -ischemic drugs for ablation of cytotoxicity in response to mitochondrial injury, thereby improving patient outcomes and reducing health-care costs.


2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Chao Sui ◽  
Dandan Jiang ◽  
Xiangju Wu ◽  
Xiaoyan Cong ◽  
Feng Li ◽  
...  

Ribonuclease L (RNase L) is an important antiviral endoribonuclease regulated by type I IFN. RNase L is activated by viral infection and dsRNA. Because the role of swine RNase L (sRNase L) is not fully understood, in this study, we generated a sRNase L knockout PK-15 (KO-PK) cell line through the CRISPR/Cas9 gene editing system to evaluate the function of sRNase L. After transfection with CRISPR-Cas9 followed by selection using puromycin, sRNase L knockout in PK-15 cells was further validated by agarose gel electrophoresis, DNA sequencing, and Western blotting. The sRNase L KO-PK cells failed to trigger RNA degradation and induced less apoptosis than the parental PK-15 cells after transfected with poly (I: C). Furthermore, the levels of ISGs mRNA in sRNase L KO-PK cells were higher than those in the parental PK-15 cells after treated with poly (I: C). Finally, both wild type and attenuated pseudorabies viruses (PRV) replicated more efficiently in sRNase L KO-PK cells than the parental PK-15 cells. Taken together, these findings suggest that sRNase L has multiple biological functions including cellular single-stranded RNA degradation, induction of apoptosis, downregulation of transcript levels of ISGs, and antiviral activity against PRV. The sRNase L KO-PK cell line will be a valuable tool for studying functions of sRNase L as well as for producing PRV attenuated vaccine.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 4919-4919 ◽  
Author(s):  
Kasyapa Chitta ◽  
Jean-Gabriel Coignet ◽  
Sakina Sojar ◽  
Pushpankur Ghoshal ◽  
Kiersten M. Miles ◽  
...  

Abstract Abstract 4919 Waldenstrom's macroglobulinemia (WM) is characterized by the presence of lymphoplasmacytic cells in the bone marrow and the secretion of IgM monoclonal antibody in the serum. Several conventional therapies are available but the disease remains incurable. Recently, bortezomib (a proteasomal inhibitor) has shown promising anti-WM activity with enhanced responses when combined with traditional therapies. Resistance to bortezomib therapy is an important event that is associated with continued treatment. In order to understand the mechanism of bortezomib resistance in WM we exposed BCWM.1 (a known WM cell line) in vitro to increasing concentrations of bortezomib over prolonged periods of time and isolated the bortezomib resistant clone (BCWM.1/BR). This clone was compared with its parent wild type cell line (BCWM.1/WT). Investigation to understand the susceptibility of BCWM.1/Br cells to various therapeutic agents showed that these cells are resistant to many of the agents such as melaphalan, fludarabine or doxorubicin. Interestingly, verapamil, a broad spectrum inhibitor of multidrug resistance, failed to reverse the resistance induced by bortezomib indicating that bortezomib resistance is not because of an activation of multidrug resistance in these cells. While BCWM.1/WT cells showed an IC50 of 7.8nM when treated for 72h with bortezomib, the BCWM.1/BR cells were not inhibited at any concentration of the compound up to 100nM. Furthermore, the cells with the acquired resistance showed a 4 fold increase in the proteasomal activity as measured by the release of a fluorescent product (7-Amino-4-methylcoumarin (AMC)) from its peptide substrate, suc-LLVY-AMC. Biochemical analysis further revealed that many of the proteasomal components are altered in BCWM.1/BR cells as compared to their parental control cells. Interestingly, protein levels of two of the proteasomal catalytic subunits, PSMB5 and PSMB9 are upregulated in resistant cells suggesting a reason for the enhanced proteasomal activity of these cells. The resistant cells showed an altered gene expression profile that indicates a transformation of the parental wild type cell line to acquire resistance. A comparative analysis of the signal transduction pathways operated in these cells showed that many of the activation and cell survival pathways that are present in BCWM.1 cells are inhibited in the resistant cells. For example, BCWM.1 cells show a constitutive activation of AKT and ERK1/2 which are inhibited in the resistant cells thus making them insensitive to the inhibitors of these pathways. Similarly, HSP27 which was earlier shown to contribute to bortezomib induced resistance was completely inhibited in BCWM.1 resistant cells. Interestingly, there is an increase in Bcl-2 protein in BCWM.1/BR cells as compared to WT cells indicating that the resistant cells might be dependent on Bcl-2 family for their survival. Inhibition of Bcl-2 induced potent apoptosis in BCWM.1/BR cells. Thus the results presented here indicate that acquired bortezomib resistance in BCWM.1 cells alters their proteasomal activity, cellular signaling pathways to make them resistant to many of the known therapies but these cells retain the Bcl-2 mediated pathway for targeting thus inhibitors of Bcl-2 may be used in therapy against bortezomib-resistant WM. Disclosures Chanan-Khan: Celgene: Honoraria, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Millennium: Honoraria, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Immunogen: Honoraria, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 1367-1367
Author(s):  
Adam J Bryant ◽  
Catalina A Palma ◽  
Mark Lutherborrow ◽  
Vivek Jayaswal ◽  
Yee Hwa Yang ◽  
...  

Abstract Abstract 1367 Acute Myeloid Leukaemia (AML) with a mutation in the Nucleophosmin1 gene (NPM1c+) accounts for one of the largest subtypes of AML, with an unknown etiology. MicroRNA dysregulation has now been implicated in the oncogenesis of many cancers including AML. We sought to investigate the role of microRNAs in the initiation and development of AML with the NPM1c+ mutation. MicroRNA profiling of bone marrow samples from 28 AML patients and confirmation by qRT-PCR demonstrated a unique microRNA signature in AML-NPM1c+ samples dominated by miR-10a over-expression of 19.6-fold compared to Nucleophosmin1 wild type (NPM1) samples. Functional assessments were performed in the human OCI-AML3 cell line, which is the only cell line to harbour NPM1c+. miR-10a repression was induced by transfection with miRCURY LNA microRNA knockdown probes (Exiqon). Cell growth (MTS) assay demonstrated a significant decrease of 19% in miR-10a knockdown cells compared to the Scrambled control. AnnexinV and Caspase 3 assays assessed the effect of miR-10a knockdown on apoptosis. miR-10a knockdown increased the proportion of AnnexinV positive events when compared to control treated cells by 34.9% and 39.3% at 24 and 48 hours respectively, but had no effect on Caspase 3 expression. Proliferation (BrdU uptake) assays did not show a change, however, clonogenic assays demonstrated a 26.1% decrease in colony number in miR-10a knockdown cells compared to the control. Potential mechanisms were elucidated by determining miR-10a mRNA targets in silico and confirmed by luciferase reporter assays. These included ARNT, GTFH1, ID4, KLF4, MAPRE1, NR4A3, RB1CC1 and TFAP2C. In this study, we have demonstrated that miR-10a was highly differentially expressed between AML-NPM1c+ cells compared to leukaemic cells bearing wild type NPM1. Knockdown of miR-10a in OCI-AML3 cells resulted in increased cell death as detected by AnnexinV binding (but not Caspase 3, indicating an effect independent of the classical apoptotic pathways) and reduced clonogenic capacity. These effects are thought to occur through miR-10a mediated modulation of ARNT, GTFH1, ID4, KLF4, MAPRE1, NR4A3, RB1CC1 and TFAP2C, all of which are associated with neoplastic transformation. Taken together, our results suggest that aberrant miR-10a over-expression in AML-NPM1c+ patients promotes cell survival. Disclosures: No relevant conflicts of interest to declare.


2001 ◽  
Vol 152 (5) ◽  
pp. 997-1006 ◽  
Author(s):  
Shirlee Tan ◽  
Nikunj Somia ◽  
Pamela Maher ◽  
David Schubert

Oxidative stress and highly specific decreases in glutathione (GSH) are associated with nerve cell death in Parkinson's disease. Using an experimental nerve cell model for oxidative stress and an expression cloning strategy, a gene involved in oxidative stress–induced programmed cell death was identified which both mediates the cell death program and regulates GSH levels. Two stress-resistant clones were isolated which contain antisense gene fragments of the translation initiation factor (eIF)2α and express a low amount of eIF2α. Sensitivity is restored when the clones are transfected with full-length eIF2α; transfection of wild-type cells with the truncated eIF2α gene confers resistance. The phosphorylation of eIF2α also results in resistance to oxidative stress. In wild-type cells, oxidative stress results in rapid GSH depletion, a large increase in peroxide levels, and an influx of Ca2+. In contrast, the resistant clones maintain high GSH levels and show no elevation in peroxides or Ca2+ when stressed, and the GSH synthetic enzyme γ-glutamyl cysteine synthetase (γGCS) is elevated. The change in γGCS is regulated by a translational mechanism. Therefore, eIF2α is a critical regulatory factor in the response of nerve cells to oxidative stress and in the control of the major intracellular antioxidant, GSH, and may play a central role in the many neurodegenerative diseases associated with oxidative stress.


2021 ◽  
Author(s):  
Noor A Mohammed ◽  
Israa Hakeem ◽  
Nikolas J Hodges ◽  
Francesco Michelangeli

Doxorubicin (DOX) is a potent anti-cancer drug, which can have unwanted side-effects such as cardiac and kidney toxicity. A detailed investigation was undertaken of the acute cytotoxic mechanisms of DOX on kidney cells, using Cos-7 cells as kidney cell model. Cos-7 cells were exposed to DOX for a period of 24 hours over a range of concentrations and the LC50 was determined to be 7µM. Further investigations showed that cell death was mainly via apoptosis involving Ca2+ and caspase 9, in addition to autophagy. Regucalcin (RGN), a cytoprotective protein found mainly in liver and kidney tissues, was overexpressed in Cos-7 cells and shown to protect against DOX-induced cell death. Subcellular localization studies in Cos-7 cells showed RGN to be strongly correlated with the nucleus. However, upon treatment with DOX for 4 hours, which induced membrane blebbing in some cells, the localization appeared to be correlated more with the mitochondria in these cells. It is yet to be determined whether this translocation is part of the cytoprotective mechanism or a consequence of chemically-induced cell stress.


2021 ◽  
Vol 5 (Supplement_1) ◽  
pp. A316-A317
Author(s):  
Satoshi Yoshino ◽  
Emi Ishida ◽  
Kazuhiko Horiguchi ◽  
Shunichi Matsumoto ◽  
Yasuyo Nakajima ◽  
...  

Abstract Background) Myeloid / Lymphoid or Mixed-lineage leukemia gene (MLL) is translocated to chromosome 11 long arm q23 region (11q23) and the MLL fusion gene expressed as a result of translocation reconstruction plays an important role in MLL-related leukemia development. It has also been reported that MLL and MLL protein play an important role in tumor development as a Menin-binding protein in Multiple Endocrine Neoplasia Type I (MEN1). More recently, normal MLL protein has been shown to have histone H3 lysine 4-methylation (H3K4-HMT) activity and to be an epigenetic transcriptional regulator. In addition, the function of MLL protein as a histone methylase has been reported in the gene region involved in metabolism regions. Here, we analyzed the involvement of MLL in glucose metabolism in the pancreas using MLL knockout mice. Methods:) Glucose metabolism in MLL knockout mice and the function of MLL in cultured cells were analyzed. Result) Since the homozygotes of MLL knockout mice are embryonic lethal, we analyzed them using Heterozygous mice. MLL heterozygous mice showed significantly weight loss compared to the wild type mice. MLL heterozygous mice showed no difference in food intake compared to wild type mice. IPGTT showed impaired glucose tolerance in MLL heterozygous mice. However, ITT showed no insulin resistance and decreased insulin secretion during glucose loading. In GSIS tests, Islets isolated from heterozygous mice pancreas have been observed to decrease insulin secretion in the response to glucose stimulation. In comprehensive gene analysis using Microarray analysis of mRNA extracted from mice islet, the gene expression changes related insulin secretion and apoptosis have been revealed in MLL heterozygous mice. Histological search showed no decrease in β-cell number, and immunohistological search showed no difference in insulin, glucagon, and TUNEL staining between heterozygous and wild type mice. And also, MLL knockdown was performed in a cultured cell line. Insulin secretion was decreased to glucose stimulation in MLL knockdown cell line same as in MLL knockout mice. In addition, RNA microarrays were performed to these cell lines, several same genes that have confirmed in MLL mouse islets were observed in MLL knockdown cell. In conclusion, MLL knockout mice showed decreased insulin secretion. It was suggested that MLL may be involved in insulin secretion in islets.


Sign in / Sign up

Export Citation Format

Share Document