scholarly journals Concentrated Growth Factor inhibit UVA-induced photoaging in Human Dermal Fibroblasts via the MAPK/AP-1 pathway

2020 ◽  
Author(s):  
Meng Zhang ◽  
Tai Zhang ◽  
Yanan Tang ◽  
Guiyun Ren ◽  
Yanning Zhang ◽  
...  

Ultraviolet (UV) radiation-induced photoaging is one of the contributors to skin aging. UV light triggers oxidative stress, producing a large number of matrix metalloproteinases and degrading the extracellular matrix in skin cells, thereby causing a series of photoaging symptoms. Concentrated growth factor (CGF) is a leukocyte- and platelet-rich fibrin biomaterial that plays a protective role in the occurrence and development of skin photoaging. In the present study, we investigated the underlying mechanism of CGF in the UVA-induced photoaging of human dermal fibroblasts (HDFs). A primary culture of HDFs was isolated from normal human facial skin. The cells were treated with CGF following UVA radiation. Proliferation of cells was detected using MTT assay, followed by measurement of reactive oxygen species (ROS) using immunofluorescence assay and flow cytometry. The mRNA and protein expression levels of P38, c-Jun, and matrix metalloproteinase-1 were detected using real-time polymerase chain reaction and western blot, respectively. CGF was found to improve cell viability by inhibiting the production of ROS and reducing oxidative damage. In addition, there was lower expression of p38 and c-Jun at the mRNA and protein levels following CGF treatment, thus resulting in the inhibition of MMP-1 expression. Our results suggest that CGF could protect HDFs against UVA-induced photoaging by blocking the P38 mitogen-activated protein kinase/activated protein-1 (P38MAPK/AP-1) signaling pathway. These findings provide a new clinical strategy for the prevention of skin photoaging.

2007 ◽  
Vol 404 (2) ◽  
pp. 327-336 ◽  
Author(s):  
Lingli Li ◽  
Trias Asteriou ◽  
Berit Bernert ◽  
Carl-Henrik Heldin ◽  
Paraskevi Heldin

The glycosaminoglycan hyaluronan is important in many tissuerepair processes. We have investigated the synthesis of hyaluronan in a panel of cell lines of fibroblastic and epithelial origin in response to PDGF (platelet-derived growth factor)-BB and other growth factors. Human dermal fibroblasts exhibited the highest hyaluronan-synthesizing activity in response to PDGF-BB. Analysis of HAS (hyaluronan synthase) and HYAL (hyaluronidase) mRNA expression showed that PDGF-BB treatment induced a 3-fold increase in the already high level of HAS2 mRNA, and increases in HAS1 and HYAL1 mRNA, whereas the levels of HAS3 and HYAL2 mRNA were not affected. Furthermore, PDGF-BB also increased the amount and activity of HAS2 protein, but not of HYAL1 and HYAL2 proteins. Using inhibitors for MEK1/2 [MAPK (mitogen-activated protein kinase)/ERK (extracellular-signal-regulated kinase) kinase 1/2] (U0126) and for PI3K (phosphoinositide 3-kinase) (LY294002), as well as the SN50 inhibitor, which prevents translocation of the active NF-κB (nuclear factor κB) to the nucleus, we observed a complete inhibition of both HAS2 transcriptional activity and hyaluronan synthesis, whereas inhibitors of other signalling pathways were without any significant effect. TGF-β1 (transforming growth factor-β1) did not increase the activity of hyaluronan synthesis in dermal fibroblasts, but increased the activity of HYALs. Importantly, inhibition of hyaluronan binding to its receptor CD44 by the monoclonal antibody Hermes-1, inhibited PDGF-BB-stimulated [3H]thymidine incorporation of dermal fibroblasts. We conclude that the ERK MAPK and PI3K signalling pathways are necessary for the regulation of hyaluronan synthesis by PDGF-BB, and that prevention of its binding to CD44 inhibits PDGF-BB-induced cell growth.


Marine Drugs ◽  
2021 ◽  
Vol 19 (8) ◽  
pp. 435
Author(s):  
Ilekuttige Priyan Shanura Fernando ◽  
Soo-Jin Heo ◽  
Mawalle Kankanamge Hasitha Madhawa Dias ◽  
Dissanayaka Mudiyanselage Dinesh Madusanka ◽  
Eui-Jeong Han ◽  
...  

Ultraviolet (UV) B exposure is a prominent cause of skin aging and a contemporary subject of interest. The effects are progressing through the generation of reactive oxygen species (ROS) that alter cell signaling pathways related to inflammatory responses. The present study evaluates the protective effects of (7aR)-6-hydroxy-4,4,7a-trimethyl-6,7-dihydro-5H-1-benzofuran-2-one (HTT) isolated from the edible brown algae Sargassum horneri against UVB protective effects in human dermal fibroblasts (HDFs). HTT treatment dose-dependently suppressed intracellular ROS generation in HDFs with an IC50 of 62.43 ± 3.22 µM. HTT abated UVB-induced mitochondrial hyperpolarization and apoptotic body formation. Furthermore, UVB-induced activation of key nuclear factor (NF)-κB and mitogen-activated protein kinase signaling proteins were suppressed in HTT treated cells while downregulating pro-inflammatory cytokines (interleukin-1β, 6, 8, 33 and tumor necrosis factor-α). Moreover, HTT treatment downregulated matrix metalloproteinase1, 2, 3, 8, 9 and 13 that was further confirmed by the inhibition of collagenase and elastase activity. The evidence implies that HTT delivers protective effects against premature skin aging caused by UVB exposure via suppressing inflammatory responses and degradation of extracellular matrix (ECM) components. Extensive research in this regard will raise perspectives for using HTT as an ingredient in UV protective ointments.


Antioxidants ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 1609
Author(s):  
Hung Manh Phung ◽  
Sullim Lee ◽  
Sukyung Hong ◽  
Sojung Lee ◽  
Kiwon Jung ◽  
...  

Similar to other organs, the skin undergoes a natural aging process. Moreover, constant direct exposure to environmental stresses, including ultraviolet irradiation, causes the signs of skin aging to appear rather early. Reactive oxygen species (ROS) and inflammatory responses accelerate skin damage in extrinsic aging. In this study, we aimed to investigate the skin protective effects of polymethoxyflavones found in Kaempferia parviflora against oxidative stress and inflammation-induced damage in human dermal fibroblasts (HDFs) stimulated by tumor necrosis factor-α (TNF-α). The experimental data identified 5,7,4′ trimethoxyflavone (TMF) as the most potent constituent in preventing TNF-α-induced HDF damage among the tested compounds and it was not only effective in inhibiting matrix metalloproteinase-1 (MMP-1) production but also in stimulating collagen, type I, and alpha 1 (COLIA1) expression. TMF suppressed TNF-α-stimulated generation of ROS and pro-inflammatory mediators, such as cyclooxygenase-2 (COX-2), interleukin (IL)-1β, and IL-6 in HDFs. TMF also inhibited the pathways regulating fibroblast damage, including mitogen-activated protein kinase (MAPK), activator protein 1 (AP-1), and nuclear factor-kappa B (NF-κB). In conclusion, TMF may be a potential agent for preventing skin aging and other dermatological disorders associated with oxidative stress and inflammation.


2018 ◽  
Vol 38 (6) ◽  
Author(s):  
Abidullah khan ◽  
Hongliang Bai ◽  
Maoguo Shu ◽  
Mingxia Chen ◽  
Amin Khan ◽  
...  

Our daily exposure to ultraviolet radiation (UVR) results in the production of reactive oxygen species (ROS), lipids, proteins and DNA damage and alteration in fibroblast structure, thus contributing to skin photoaging. For this reason, the use of natural bioactive compounds with antioxidant activity could be a strategic tool to overcome ultraviolet A (UV-A) induced deleterious effect. Neferine is an alkaloid extract from the seed embryos of lotus (Nelumbo nucifera Gaertn). In the present study, we report the protective effect of neferine against UV-A induced oxidative stress and photoaging in human dermal fibroblasts (HDFs). HDFs subjected to UV-A irradiation showed increased production of ROS and malondialdehyde (MDA). Furthermore, it depleted the cellular enzymatic antioxidant superoxide dismutase (SOD) and non-enzymatic antioxidant glutathione peroxidase (GPx). On the other hand, HDFs treated with neferine followed by UV-A irradiation reversed the process, reduced the ROS and lipid peroxidation and restored the antioxidants pool. Moreover, neferine treatment significantly inhibited UV-A induced matrix metalloproteinase-1 (MMP-1) expression in HDFs. Remarkable morphological and ultrastructural alterations observed in HDFs upon UV-A irradiation, were also reduced with neferine treatment. Taken together, our results suggest that neferine has strong antioxidative and photoprotective properties and thus may be a potential agent for the prevention and treatment of UV-A mediated skin photoaging.


Antioxidants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 514
Author(s):  
Sullim Lee ◽  
Giang Do Hoang ◽  
Daeyoung Kim ◽  
Ho Sueb Song ◽  
Sungyoul Choi ◽  
...  

The skin is an important organ in the human body that protects the body from environmentally hazardous substances. Reactive oxygen species (ROS) cause inflammatory reactions and degradation of the extracellular matrix leading to skin aging and various cutaneous lesions. This study evaluated the potential of isoflavones isolated from Maclura tricuspidata fruit to prevent TNF-α-induced skin inflammation in normal human dermal fibroblasts (HDFs). It focused on alpinumisoflavone (AIF) that suppressed the accumulation of ROS and nitric oxide (NO) in tumor necrosis factor-alpha (TNF-α)-treated HDFs. AIF inhibited the TNF-α-induced increase in matrix metalloproteinase-1, decreased procollagen I α1, and suppressed pro-inflammatory mediators and pro-inflammatory cytokines, including NO synthase, cyclooxygenase-2, interleukin (IL)-1β, IL-6, and IL-8 that trigger inflammatory responses. AIF inhibited nuclear factor-κB and activating protein 1 mitogen-activated protein kinases that were increased by TNF-α stimulation. These results suggest that AIF may protect skin from aging and various cutaneous lesions.


Sign in / Sign up

Export Citation Format

Share Document