scholarly journals Molecular mechanism of targeted inhibition of HMGA2 via miRNAlet-7a in proliferation and metastasis of laryngeal squamous cell carcinoma

2020 ◽  
Vol 40 (6) ◽  
Author(s):  
Li-Juan Ma ◽  
Jun Wu ◽  
En Zhou ◽  
Juan Yin ◽  
Xu-Ping Xiao

Abstract MiRNAlet-7a is associated with the tumorigenesis of laryngeal squamous cell carcinoma (LSCC). Our study was designed to infer whether let-7a targets high-mobility AT-hook 2 (HMGA2) and suppresses laryngeal carcinoma cell proliferation, invasion, and migration. The expression levels of let-7a and HMGA2 were measured in 30 LSCC clinical specimens by qRT-PCR and their correlation was analyzed. Cell model and mice xenograft model with or without let-7a overexpression were constructed to evaluate the effects of let-7a on LSCC. Moreover, luciferase assay was performed to reveal the interaction between let-7a and HMGA2, which was further verified in xenograft. Let-7a was significantly down-regulated and HMGA2 was up-regulated in LSCC tissues compared with normal tissues (P<0.05), both of which were significantly correlated with TNM stage and lymph node metastases of LSCC patients (P<0.05). We also observed a negative correlation between let-7a and HMGA2 expression in LSCC samples (r = −0.642, P<0.05). In vitro and in vivo experiments demonstrated that let-7a overexpression could inhibit cell proliferation and tumor growth of LSCC and simultaneously down-regulate the expression of HMGA2. Moreover, the regulation of HMGA2 by let-7a was also proved by luciferase assay. Our results revealed that let-7a promotes development and progression of LSCC through inhibiting the expression of HMGA2. Therefore, let-7a may thus be a potential diagnostic biomarker and therapeutic target for treating LSCC.

2020 ◽  
Vol 11 (10) ◽  
Author(s):  
Wei Gao ◽  
Yuliang Zhang ◽  
Hongjie Luo ◽  
Min Niu ◽  
Xiwang Zheng ◽  
...  

Abstract Spindle and kinetochore-associated complex subunit 3 (SKA3) is a well-known regulator of chromosome separation and cell division, which plays an important role in cell proliferation. However, the mechanism of SKA3 regulating tumor proliferation via reprogramming metabolism is unknown. Here, SKA3 is identified as an oncogene in laryngeal squamous cell carcinoma (LSCC), and high levels of SKA3 are closely associated with malignant progression and poor prognosis. In vitro and in vivo experiments demonstrate that SKA3 promotes LSCC cell proliferation and chemoresistance through a novel role of reprogramming glycolytic metabolism. Further studies reveal the downstream mechanisms of SKA3, which can bind and stabilize polo-like kinase 1 (PLK1) protein via suppressing ubiquitin-mediated degradation. The accumulation of PLK1 activates AKT and thus upregulates glycolytic enzymes HK2, PFKFB3, and PDK1, resulting in enhancement of glycolysis. Furthermore, our data reveal that phosphorylation at Thr360 of SKA3 is critical for its binding to PLK1 and the increase in glycolysis. Collectively, the novel oncogenic signal axis “SKA3-PLK1-AKT” plays a critical role in the glycolysis of LSCC. SKA3 may serve as a prognostic biomarker and therapeutic target, providing a potential strategy for proliferation inhibition and chemosensitization in tumors, especially for LSCC patients with PLK1 inhibitor resistance.


Author(s):  
Xuechao Jia ◽  
Chuntian Huang ◽  
Yamei Hu ◽  
Qiong Wu ◽  
Fangfang Liu ◽  
...  

Abstract Background Esophageal squamous cell carcinoma (ESCC) is an aggressive and lethal cancer with a low 5 year survival rate. Identification of new therapeutic targets and its inhibitors remain essential for ESCC prevention and treatment. Methods TYK2 protein levels were checked by immunohistochemistry. The function of TYK2 in cell proliferation was investigated by MTT [(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] and anchorage-independent cell growth. Computer docking, pull-down assay, surface plasmon resonance, and kinase assay were used to confirm the binding and inhibition of TYK2 by cirsiliol. Cell proliferation, western blot and patient-derived xenograft tumor model were used to determine the inhibitory effects and mechanism of cirsiliol in ESCC. Results TYK2 was overexpressed and served as an oncogene in ESCC. Cirsiliol could bind with TYK2 and inhibit its activity, thereby decreasing dimer formation and nucleus localization of signal transducer and activator of transcription 3 (STAT3). Cirsiliol could inhibit ESCC growth in vitro and in vivo. Conclusions TYK2 is a potential target in ESCC, and cirsiliol could inhibit ESCC by suppression of TYK2.


Author(s):  
Zhirong Li ◽  
Xuebo Qin ◽  
Wei Bian ◽  
Yishuai Li ◽  
Baoen Shan ◽  
...  

Abstract Background In recent years, long non-coding RNAs (lncRNAs) are of great importance in development of different types of tumors, while the function of lncRNA ZFAS1 is rarely discussed in esophageal squamous cell carcinoma (ESCC). Therefore, we performed this study to explore the expression of exosomal lncRNA ZFAS1 and its molecular mechanism on ESCC progression. Methods Expression of ZFAS1 and miR-124 in ESCC tissues was detected. LncRNA ZFAS1 was silenced to detect its function in the biological functions of ESCC cells. A stable donor and recipient culture model was established. Eca109 cells transfected with overexpressed and low expressed ZFAS1 plasmid and miR-124 inhibitor labeled by Cy3 were the donor cells, and then co-cultured with recipient cells to observe the transmission of Cy3-ZFAS1 between donor cells and recipient cells. The changes of cell proliferation, apoptosis, invasion, and migration in recipient cells were detected. The in vivo experiment was conducted for verifying the in vitro results. Results LncRNA ZFAS1 was upregulated and miR-124 was down-regulated in ESCC tissues. Silencing of ZFAS1 contributed to suppressed proliferation, migration, invasion and tumor growth in vitro and induced apoptosis of ESCC cells. LncRNA ZFAS1 was considered to be a competing endogenous RNA to regulate miR-124, thereby elevating STAT3 expression. Exosomes shuttled ZFAS1 stimulated proliferation, migration and invasion of ESCC cells and restricted their apoptosis with increased STAT3 and declined miR-124. Furthermore, in vivo experiment suggested that elevated ZFAS1-exo promoted tumor growth in nude mice. Conclusion This study highlights that exosomal ZFAS1 promotes the proliferation, migration and invasion of ESCC cells and inhibits their apoptosis by upregulating STAT3 and downregulating miR-124, thereby resulting in the development of tumorigenesis of ESCC.


2020 ◽  
Vol 11 (10) ◽  
Author(s):  
Qinchao Hu ◽  
Jianmin Peng ◽  
Laibo Jiang ◽  
Wuguo Li ◽  
Qiao Su ◽  
...  

Abstract CDK4/6 inhibitors show promising antitumor activity in a variety of solid tumors; however, their role in head and neck squamous cell carcinoma (HNSCC) requires further investigation. The senescence-associated secretory phenotype (SASP) induced by CDK4/6 inhibitors has dual effects on cancer treatment. The need to address the SASP is a serious challenge in the clinical application of CDK4/6 inhibitors. We investigated whether metformin can act as a senostatic drug to modulate the SASP and enhance the anticancer efficacy of CDK4/6 inhibitors in HNSCC. In this study, the efficacy of a combination of the CDK4/6 inhibitor LY2835219 and metformin in HNSCC was investigated in in vitro assays, an HSC6 xenograft model, and a patient-derived xenograft model. Senescence-associated β-galactosidase staining, antibody array, sphere-forming assay, and in vivo tumorigenesis assay were used to detect the impacts of metformin on the senescence and SASP induced by LY2835219. We found that LY2835219 combined with metformin synergistically inhibited HNSCC by inducing cell cycle arrest in vitro and in vivo. Metformin significantly modulated the profiles of the SASP elicited by LY2835219 by inhibiting the mTOR and stat3 pathways. The LY2835219-induced SASP resulted in upregulation of cancer stemness, while this phenomenon can be attenuated when combined with metformin. Furthermore, results showed that the stemness inhibition by metformin was associated with blockade of the IL6-stat3 axis. Survival analysis demonstrated that overexpression of IL6 and stemness markers was associated with poor survival in HNSCC patients, indicating that including metformin to target these proteins might improve patient prognosis. Collectively, our data suggest that metformin can act as a senostatic drug to enhance the anticancer efficacy of CDK4/6 inhibitors by reprogramming the profiles of the SASP.


2019 ◽  
Vol 97 (5) ◽  
pp. 589-599 ◽  
Author(s):  
Jie Yang ◽  
Fan Yu ◽  
Jinlei Guan ◽  
Tao Wang ◽  
Changjiang Liu ◽  
...  

A previous study has reported that knockdown of RING finger protein 2 (RNF2) increases the radiosensitivity of esophageal cancer cells both in vitro and in vivo. However, the effect of RNF2 knockdown on radiosensitivity in squamous cell carcinoma (SqCC) remains unknown. For this, NCI-H226 and SK-MES-1 cells were exposed to X-ray irradiation and then RNF2 levels were determined. RNF2 was knocked-down and stable transfectants were selected. Radiosensitivity, cell proliferation, apoptosis, cell cycle, and γ-H2AX foci formation were evaluated. Interaction among ataxia telangiectasia mutated protein (ATM), mediator of DNA damage checkpoint 1 (MDC1), and H2AX were examined. Xenograft models were used to explore the effect of RNF2 knockdown on radiosensitivity in vivo. The results showed that RNF2 expression was significantly increased by X-ray irradiation. RNF2 knockdown combined with X-ray irradiation markedly inhibited cell proliferation, caused cell cycle arrest at the G1 phase, and induced cell apoptosis. In addition, RNF2 knockdown enhanced the radiosensitivity of SqCC cells, inhibited irradiation-induced γ-H2AX foci formation, and impaired the interactions among ATM, MDC1, and H2AX. Furthermore, combination of RNF2 knockdown and X-ray irradiation suppressed tumor growth and promoted tumor cell apoptosis in vivo. RNF2 may be a new therapeutic target to enhance the radiosensitivity of SqCC cells in lung.


Author(s):  
Jie Li ◽  
Xu Han ◽  
Yan Gu ◽  
Jixiang Wu ◽  
Jianxiang Song ◽  
...  

Esophageal squamous cell carcinoma (ESCC) has been one of the key causes of cancer deaths worldwide. It has been found that long non-coding RNA (lncRNA) is related to the generation and progression of various cancers (including ESCC). However, there are still many lncRNAs related to ESCC whose functions and molecular mechanisms have not been clearly elucidated. In this study, we first reported that lncRNA MTX2-6 was significantly downregulated in ESCC tissues and cell lines. The decreased expression of MTX2-6 is closely related to larger tumor and worse prognosis of ESCC patients. Through a series of functional experiments, we detected that overexpressed MTX2-6 inhibited cell proliferation and promoted cell apoptosis of ESCC in vitro and in vivo. Further studies showed that MTX2-6 exerts as a competing endogenous RNA (ceRNA) by binding miR-574-5p and elevates the expression of SMAD4 in ESCC. In summary, our results clarify the tumor suppressor roles of MTX2-6/miR-574-5p/SMAD4 axis in the progression of ESCC and provide emerging therapeutic targets for ESCC patients.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Jian-Xing Wang ◽  
Xin-Ju Jia ◽  
Yan Liu ◽  
Jin-Hui Dong ◽  
Xiu-Min Ren ◽  
...  

Abstract Background Increasing evidence has suggested that microRNAs (miRNAs) act as key post-transcriptional regulators in tumor progression. Previous studies have confirmed that miR-17-5p functions as an oncogene in multiple cancers and contributes to tumor progression. However, the role and biological functions of miR-17-5p in the development of laryngeal squamous cell carcinoma (LSCC) still remain unknown. Methods qRT-PCR was used to detect miRNA and mRNA expression levels in LSCC tissues and cell lines. CCK-8 assay was used to measure cell viability and flow cytometry was performed to evaluate cell apoptosis. Western blot analysis was used to detect the protein levels of BAX, BCL-2, cleaved Caspase-3, PIK3R1 and AKT. Luciferase reporter assay was used to detect the effect of miR-17-5p on PIK3R1 expression. Xenograft animal model was used to test the effect of miR-17-5p on LSCC cell in vivo. Results In the present study, we found that miR-17-5p expression level was upregulated in LSCC tissues and cell lines. Depletion of miR-17-5p in LSCC cells significantly reduced cell proliferation and promoted cell apoptosis in vitro and in vivo. Mechanically, knockdown of miR-17-5p in LSCC cells inhibited BCL-2 expression while enhanced BAX and cleaved Caspase-3 protein expression. Moreover, depletion of miR-17-5p in LSCC cells suppressed AKT phosphorylation but did not influence PTEN expression. Importantly, miR-17-5p positively regulated PIK3R1 expression by directly binding to its 3′-untranslated region (UTR). Additionally, PIK3R1, which expression was downregulated in LSCC tissues and cell lines, was involved in LSCC cell survival by modulating the activation of AKT signal pathway. Dysregulation of miR-17-5p/PIK3R1 axis was participated in LSCC cell proliferation and apoptosis by inhibiting the activation of the PI3K/AKT signaling pathway. Conclusions In conclusion, our study indicates that the miR-17-5p/PIK3R1 axis plays an essential role in the development of LSCC and provides a potential therapeutic target for LSCC treatment.


2021 ◽  
Author(s):  
Yi He ◽  
Bin Li ◽  
Yang Yang ◽  
Rong Hua ◽  
Zhigang Li

Abstract Background: Long non-coding RNAs (lncRNAs) are reported act as important regulators in various cancers. LncRNA JPX was identified as an oncogenic regulator in lung cancer. However, the function of lncRNA JPX in the progression of esophageal squamous cell carcinoma (ESCC) remains unclear. Methods: The effects and molecular mechanism of JPX on the progression of ESCC were investigated using fluorescence in situ hybridization (FISH), cell proliferation, quantitative real-time PCR (qRT-PCR), western blot, dual luciferase, cell cycle, 5-Ethynyl-2′-Deoxyuridine (EdU) incorporation, transwell, RNA pull-down, tube formation and RNA immunoprecipitation (RIP) assays. Results: In the present study, we found JPX was highly expressed in tissues of ESCC patients and different ESCC cell lines. Functional assays demonstrated that JPX promoted ESCC cell proliferation, migration and invasion in vitro and tumor growth in vivo. Moreover, we found JPX promoted ESCC mobility in vitro. Mechanistically, the results showed that JPX functions as a sponge of miR-516b-5p, which targets an oncogene vascular endothelial growth factor A (VEGFA) in ESCC cells. Interactions between miR-516b-5p and JPX or VEGFA were confirmed by luciferase reporter assays. Furthermore, inhibition of JPX significantly attenuated the cell growth and mobility ability of ESCC cells in vitro. In addition, miR-516b-5p overexpression abrogated JPX enhanced proliferation, migration, invasion, and angiogenesis of ESCC cells. Conclusions: Our study demonstrated that JPX played an important role in promoting ESCC progression via the miR-516b-5p/VEGFA pathway and might serve as a promising novel therapeutic target for ESCC patients.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Yi Zhang ◽  
Kaisai Tian ◽  
Enhui Zhou ◽  
Xiaocheng Xue ◽  
Shiling Yan ◽  
...  

Recently, circular RNAs have been shown to function as critical regulators of many human cancers. However, the circRNA mechanism in laryngeal squamous cell carcinoma (LSCC) remains elusive. Recent investigations using bioinformatics analysis revealed high expression of hsa_circ_0023305 in LSCC tissues compared to normal tissues. Furthermore, we discovered that hsa_circ_0023305 expression level was positively correlated to tumor/node/metastasis (TNM) stage as well as lymph node metastasis in LSCC. Moreover, higher hsa_circ_0023305 levels were correlated to poorer LSCC patient outcomes. Knockdown of hsa_circ_0023305 significantly inhibited LSCC cell proliferation, invasion, and migration abilities. Our team validated that hsa_circ_0023305 functioned as a miR-218-5p sponge from a mechanistic perspective, targeting the melastatin-related transient receptor potential 7 (TRPM7) in LSCC cells. TRPM7 regulates a nonselective cation channel and promotes cancer proliferation and metastasis. Our data demonstrated that miR-218-5p was downregulated in LSCC and that miR-218-5p upregulation repressed LSCC proliferation and invasion both in vivo and in vitro. Additionally, we found that hsa_circ_0023305-mediated upregulation of TRPM7 inhibited miR-218-5p and contributed to LSCC migration, proliferation, and invasion. In summary, these data propose a new mechanism by which the hsa_circ_0023305/miR-218-5p/TRPM7 network enhances LSCC progression.


Sign in / Sign up

Export Citation Format

Share Document