Glutamine repeats: structural hypotheses and neurodegeneration

2002 ◽  
Vol 30 (4) ◽  
pp. 548-551 ◽  
Author(s):  
L. Masino ◽  
A. Pastore

A growing number of neurodegenerative diseases are caused by expansion of CAG trinucleotide repeats coding for polyglutamine. The presence of intranuclear inclusions in the affected neuronal cells has suggested a mechanism for pathogenesis based on protein misfolding and aggregation. Detailed understanding of these phenomena is therefore crucial in order to rationalize different phases of the diseases. In the past decade, a few studies have focused on the structural properties of polyglutamine and on the molecular bases of the aggregation process. Most of these studies have been performed on polyglutamine peptides and protein models. Only one report is currently available on the characterization of a full-length polyglutamine protein. The structural hypotheses resulting from these studies are reviewed here.

Author(s):  
Anita Pras ◽  
Ellen A. A. Nollen

Proteome damage plays a major role in aging and age-related neurodegenerative diseases. Under healthy conditions, molecular quality control mechanisms prevent toxic protein misfolding and aggregation. These mechanisms include molecular chaperones for protein folding, spatial compartmentalization for sequestration, and degradation pathways for the removal of harmful proteins. These mechanisms decline with age, resulting in the accumulation of aggregation-prone proteins that are harmful to cells. In the past decades, a variety of fast- and slow-aging model organisms have been used to investigate the biological mechanisms that accelerate or prevent such protein toxicity. In this review, we describe the most important mechanisms that are required for maintaining a healthy proteome. We describe how these mechanisms decline during aging and lead to toxic protein misassembly, aggregation, and amyloid formation. In addition, we discuss how optimized protein homeostasis mechanisms in long-living animals contribute to prolonging their lifespan. This knowledge might help us to develop interventions in the protein homeostasis network that delay aging and age-related pathologies.


Author(s):  
R. E. Herfert

Studies of the nature of a surface, either metallic or nonmetallic, in the past, have been limited to the instrumentation available for these measurements. In the past, optical microscopy, replica transmission electron microscopy, electron or X-ray diffraction and optical or X-ray spectroscopy have provided the means of surface characterization. Actually, some of these techniques are not purely surface; the depth of penetration may be a few thousands of an inch. Within the last five years, instrumentation has been made available which now makes it practical for use to study the outer few 100A of layers and characterize it completely from a chemical, physical, and crystallographic standpoint. The scanning electron microscope (SEM) provides a means of viewing the surface of a material in situ to magnifications as high as 250,000X.


2018 ◽  
Vol 24 (19) ◽  
pp. 2055-2075 ◽  
Author(s):  
Kalliopi Kostelidou ◽  
Ilias Matis ◽  
Georgios Skretas

Neurodegenerative Diseases (ND) are a major threat to the aging population and the lack of a single preventive or disease-modifying agent only serves to increase their impact. In the past few years, protein misfolding and the subsequent formation of neurotoxic oligomeric/aggregated protein species have emerged as a unifying theme underlying the pathology of these complex diseases. Recently developed microbial genetic screens and selection systems for monitoring ND-associated protein misfolding have allowed the establishment of highthroughput assays for the identification of cellular factors and processes that are important mediators of NDassociated proteotoxicities. In addition, such systems have facilitated the discovery of synthetic and natural compounds with the ability to rescue the misfolding and the associated pathogenic effects of aggregation-prone proteins associated with NDs. This review outlines such available systems in bacteria and yeast, whose usage will likely accelerate the pre-clinical discovery process for effective drugs against a variety of NDs with high socioeconomic impact.


Author(s):  
Sarah Lloyd

This chapter explores what we can know about the conceptualization and representation of by poorer Britons. It draws on ‘pauper letters’ to parish authorities, written tactically, and on autobiographies and letters composed by the relatively poor, noting echoes of the characterization of happiness by elite social commentators. It draws attention to a growing interest (linked to the development of the concept of nostalgia) in the emotional charge that could be derived from reflection on emotional experience as people contrasted past happiness with present misery, or vice versa. While reading such accounts may lead us to think that we are penetrating the interior lives of marginal people in the past, Lloyd suggests that our response is probably coloured by the fact that we are heirs to these ways of conceptualizing and representing experience. We need to work harder to glean insight from earlier ways of representing happiness and suffering.


Author(s):  
Michael C. Rea

This chapter provides a detailed characterization of the various meanings of the term “divine hiddenness,” carefully and rigorously articulates the version of the problem of divine hiddenness that has dominated contemporary philosophical discussion for the past twenty-five years, and then explains the relationship between that problem and the problem of evil.


2020 ◽  
Vol 21 (18) ◽  
pp. 6623 ◽  
Author(s):  
Marc Bienz ◽  
Salima Ramdani ◽  
Hans Knecht

Our understanding of the tumorigenesis of classical Hodgkin lymphoma (cHL) and the formation of Reed–Sternberg cells (RS-cells) has evolved drastically in the last decades. More recently, a better characterization of the signaling pathways and the cellular interactions at play have paved the way for new targeted therapy in the hopes of improving outcomes. However, important gaps in knowledge remain that may hold the key for significant changes of paradigm in this lymphoma. Here, we discuss the past, present, and future of cHL, and review in detail the more recent discoveries pertaining to genetic instability, anti-apoptotic signaling pathways, the tumoral microenvironment, and host-immune system evasion in cHL.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Oscar Aubi ◽  
Karina S. Prestegård ◽  
Kunwar Jung-KC ◽  
Tie-Jun Sten Shi ◽  
Ming Ying ◽  
...  

AbstractPhenylketonuria (PKU) is caused by autosomal recessive variants in phenylalanine hydroxylase (PAH), leading to systemic accumulation of L-phenylalanine (L-Phe) that may reach neurotoxic levels. A homozygous Pah-R261Q mouse, with a highly prevalent misfolding variant in humans, reveals the expected hepatic PAH activity decrease, systemic L-Phe increase, L-tyrosine and L-tryptophan decrease, and tetrahydrobiopterin-responsive hyperphenylalaninemia. Pah-R261Q mice also present unexpected traits, including altered lipid metabolism, reduction of liver tetrahydrobiopterin content, and a metabolic profile indicative of oxidative stress. Pah-R261Q hepatic tissue exhibits large ubiquitin-positive, amyloid-like oligomeric aggregates of mutant PAH that colocalize with selective autophagy markers. Together, these findings reveal that PKU, customarily considered a loss-of-function disorder, can also have toxic gain-of-function contribution from protein misfolding and aggregation. The proteostasis defect and concomitant oxidative stress may explain the prevalence of comorbid conditions in adult PKU patients, placing this mouse model in an advantageous position for the discovery of mutation-specific biomarkers and therapies.


2020 ◽  
Vol 21 (24) ◽  
pp. 9777
Author(s):  
Camille Le Guilcher ◽  
Tomas Luyten ◽  
Jan B. Parys ◽  
Mathieu Pucheault ◽  
Olivier Dellis

The store-operated calcium entry, better known as SOCE, forms the main Ca2+ influx pathway in non-excitable cells, especially in leukocytes, where it is required for cell activation and the immune response. During the past decades, several inhibitors were developed, but they lack specificity or efficacy. From the non-specific SOCE inhibitor 2-aminoethyl diphenylborinate (2-APB), we synthetized 16 new analogues by replacing/modifying the phenyl groups. Among them, our compound P11 showed the best inhibitory capacity with a Ki ≈ 75 nM. Furthermore, below 1 µM, P11 was devoid of any inhibitory activity on the two other main cellular targets of 2-APB, the IP3 receptors, and the SERCA pumps. Interestingly, Jurkat T cells secrete interleukin-2 under phytohemagglutinin stimulation but undergo cell death and stop IL-2 synthesis when stimulated in the presence of increasing P11 concentrations. Thus, P11 could represent the first member of a new and potent family of immunosuppressors.


Molecules ◽  
2021 ◽  
Vol 26 (12) ◽  
pp. 3607
Author(s):  
Olena Dobrovolska ◽  
Øyvind Strømland ◽  
Ørjan Sele Handegård ◽  
Martin Jakubec ◽  
Morten L. Govasli ◽  
...  

The driving forces and conformational pathways leading to amphitropic protein-membrane binding and in some cases also to protein misfolding and aggregation is the subject of intensive research. In this study, a chimeric polypeptide, A-Cage-C, derived from α-Lactalbumin is investigated with the aim of elucidating conformational changes promoting interaction with bilayers. From previous studies, it is known that A-Cage-C causes membrane leakages associated with the sporadic formation of amorphous aggregates on solid-supported bilayers. Here we express and purify double-labelled A-Cage-C and prepare partially deuterated bicelles as a membrane mimicking system. We investigate A-Cage-C in the presence and absence of these bicelles at non-binding (pH 7.0) and binding (pH 4.5) conditions. Using in silico analyses, NMR, conformational clustering, and Molecular Dynamics, we provide tentative insights into the conformations of bound and unbound A-Cage-C. The conformation of each state is dynamic and samples a large amount of overlapping conformational space. We identify one of the clusters as likely representing the binding conformation and conclude tentatively that the unfolding around the central W23 segment and its reorientation may be necessary for full intercalation at binding conditions (pH 4.5). We also see evidence for an overall elongation of A-Cage-C in the presence of model bilayers.


2021 ◽  
Author(s):  
Lei Jin ◽  
Nerea Bilbao ◽  
Yang Lv ◽  
Xiao-Ye Wang ◽  
Soltani Paniz ◽  
...  

Graphene nanoribbons (GNRs), quasi-one-dimensional strips of graphene, exhibit a nonzero bandgap due to quantum confinement and edge effects. In the past decade, different types of GNRs with atomically precise structures...


Sign in / Sign up

Export Citation Format

Share Document