scholarly journals Studying bacterial chemosensory array with CryoEM

Author(s):  
Zhuan Qin ◽  
Peijun Zhang

Bacteria direct their movement in respond to gradients of nutrients and other stimuli in the environment through the chemosensory system. The behavior is mediated by chemosensory arrays that are made up of thousands of proteins to form an organized array near the cell pole. In this review, we briefly introduce the architecture and function of the chemosensory array and its core signaling unit. We describe the in vivo and in vitro systems that have been used for structural studies of chemosensory array by cryoEM, including reconstituted lipid nanodiscs, 2D lipid monolayer arrays, lysed bacterial ghosts, bacterial minicells and native bacteria cells. Lastly, we review recent advances in structural analysis of chemosensory arrays using state-of-the-art cryoEM and cryoET methodologies, focusing on the latest developments and insights with a perspective on current challenges and future directions.

2019 ◽  
Vol 30 (12) ◽  
pp. 1505-1522 ◽  
Author(s):  
Amanda C. Drennan ◽  
Shivaani Krishna ◽  
Mark A. Seeger ◽  
Michael P. Andreas ◽  
Jennifer M. Gardner ◽  
...  

Centrosomes and spindle pole bodies (SPBs) are membraneless organelles whose duplication and assembly is necessary for bipolar mitotic spindle formation. The structural organization and functional roles of major proteins in these organelles can provide critical insights into cell division control. Spc42, a phosphoregulated protein with an N-terminal dimeric coiled-coil (DCC), assembles into a hexameric array at the budding yeast SPB core, where it functions as a scaffold for SPB assembly. Here, we present in vitro and in vivo data to elucidate the structural arrangement and biological roles of Spc42 elements. Crystal structures reveal details of two additional coiled-coils in Spc42: a central trimeric coiled-coil and a C-terminal antiparallel DCC. Contributions of the three Spc42 coiled-coils and adjacent undetermined regions to the formation of an ∼145 Å hexameric lattice in an in vitro lipid monolayer assay and to SPB duplication and assembly in vivo reveal structural and functional redundancy in Spc42 assembly. We propose an updated model that incorporates the inherent symmetry of these Spc42 elements into a lattice, and thereby establishes the observed sixfold symmetry. The implications of this model for the organization of the central SPB core layer are discussed.


2021 ◽  
Vol 12 ◽  
Author(s):  
Kalpani N. Udeni Galpayage Dona ◽  
Jonathan Franklin Hale ◽  
Tobi Salako ◽  
Akanksha Anandanatarajan ◽  
Kiet A. Tran ◽  
...  

Tissue engineering of the blood-brain barrier (BBB) in vitro has been rapidly expanding to address the challenges of mimicking the native structure and function of the BBB. Most of these models utilize 2D conventional microfluidic techniques. However, 3D microvascular models offer the potential to more closely recapitulate the cytoarchitecture and multicellular arrangement of in vivo microvasculature, and also can recreate branching and network topologies of the vascular bed. In this perspective, we discuss current 3D brain microvessel modeling techniques including templating, printing, and self-assembling capillary networks. Furthermore, we address the use of biological matrices and fluid dynamics. Finally, key challenges are identified along with future directions that will improve development of next generation of brain microvasculature models.


2020 ◽  
Vol 4 ◽  
pp. 239784732097975
Author(s):  
Stéphanie Boué ◽  
Didier Goedertier ◽  
Julia Hoeng ◽  
Anita Iskandar ◽  
Arkadiusz K Kuczaj ◽  
...  

E-vapor products (EVP) have become popular alternatives for cigarette smokers who would otherwise continue to smoke. EVP research is challenging and complex, mostly because of the numerous and rapidly evolving technologies and designs as well as the multiplicity of e-liquid flavors and solvents available on the market. There is an urgent need to standardize all stages of EVP assessment, from the production of a reference product to e-vapor generation methods and from physicochemical characterization methods to nonclinical and clinical exposure studies. The objective of this review is to provide a detailed description of selected experimental setups and methods for EVP aerosol generation and collection and exposure systems for their in vitro and in vivo assessment. The focus is on the specificities of the product that constitute challenges and require development of ad hoc assessment frameworks, equipment, and methods. In so doing, this review aims to support further studies, objective evaluation, comparison, and verification of existing evidence, and, ultimately, formulation of standardized methods for testing EVPs.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Yi Xin She ◽  
Qing Yang Yu ◽  
Xiao Xiao Tang

AbstractInterleukins, a group of cytokines participating in inflammation and immune response, are proved to be involved in the formation and development of pulmonary fibrosis. In this article, we reviewed the relationship between interleukins and pulmonary fibrosis from the clinical, animal, as well as cellular levels, and discussed the underlying mechanisms in vivo and in vitro. Despite the effects of interleukin-targeted treatment on experimental pulmonary fibrosis, clinical applications are lacking and unsatisfactory. We conclude that intervening in one type of interleukins with similar functions in IPF may not be enough to stop the development of fibrosis as it involves a complex network of regulation mechanisms. Intervening interleukins combined with other existing therapy or targeting interleukins affecting multiple cells/with different functions at the same time may be one of the future directions. Furthermore, the intervention time is critical as some interleukins play different roles at different stages. Further elucidation on these aspects would provide new perspectives on both the pathogenesis mechanism, as well as the therapeutic strategy and drug development.


2020 ◽  
pp. 1-14
Author(s):  
Shelby Shrigley ◽  
Fredrik Nilsson ◽  
Bengt Mattsson ◽  
Alessandro Fiorenzano ◽  
Janitha Mudannayake ◽  
...  

Background: Human induced pluripotent stem cells (hiPSCs) have been proposed as an alternative source for cell replacement therapy for Parkinson’s disease (PD) and they provide the option of using the patient’s own cells. A few studies have investigated transplantation of patient-derived dopaminergic (DA) neurons in preclinical models; however, little is known about the long-term integrity and function of grafts derived from patients with PD. Objective: To assess the viability and function of DA neuron grafts derived from a patient hiPSC line with an α-synuclein gene triplication (AST18), using a clinical grade human embryonic stem cell (hESC) line (RC17) as a reference control. Methods: Cells were differentiated into ventral mesencephalic (VM)-patterned DA progenitors using an established GMP protocol. The progenitors were then either terminally differentiated to mature DA neurons in vitro or transplanted into 6-hydroxydopamine (6-OHDA) lesioned rats and their survival, maturation, function, and propensity to develop α-synuclein related pathology, were assessed in vivo. Results: Both cell lines generated functional neurons with DA properties in vitro. AST18-derived VM progenitor cells survived transplantation and matured into neuron-rich grafts similar to the RC17 cells. After 24 weeks, both cell lines produced DA-rich grafts that mediated full functional recovery; however, pathological changes were only observed in grafts derived from the α-synuclein triplication patient line. Conclusion: This data shows proof-of-principle for survival and functional recovery with familial PD patient-derived cells in the 6-OHDA model of PD. However, signs of slowly developing pathology warrants further investigation before use of autologous grafts in patients.


Author(s):  
Birte Weber ◽  
Niklas Franz ◽  
Ingo Marzi ◽  
Dirk Henrich ◽  
Liudmila Leppik

AbstractDue to the continued high incidence and mortality rate worldwide, there is a need to develop new strategies for the quick, precise, and valuable recognition of presenting injury pattern in traumatized and poly-traumatized patients. Extracellular vesicles (EVs) have been shown to facilitate intercellular communication processes between cells in close proximity as well as distant cells in healthy and disease organisms. miRNAs and proteins transferred by EVs play biological roles in maintaining normal organ structure and function under physiological conditions. In pathological conditions, EVs change the miRNAs and protein cargo composition, mediating or suppressing the injury consequences. Therefore, incorporating EVs with their unique protein and miRNAs signature into the list of promising new biomarkers is a logical next step. In this review, we discuss the general characteristics and technical aspects of EVs isolation and characterization. We discuss results of recent in vitro, in vivo, and patients study describing the role of EVs in different inflammatory diseases and traumatic organ injuries. miRNAs and protein signature of EVs found in patients with acute organ injury are also debated.


Micromachines ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 884
Author(s):  
Marta Cherubini ◽  
Scott Erickson ◽  
Kristina Haase

Acting as the primary link between mother and fetus, the placenta is involved in regulating nutrient, oxygen, and waste exchange; thus, healthy placental development is crucial for a successful pregnancy. In line with the increasing demands of the fetus, the placenta evolves throughout pregnancy, making it a particularly difficult organ to study. Research into placental development and dysfunction poses a unique scientific challenge due to ethical constraints and the differences in morphology and function that exist between species. Recently, there have been increased efforts towards generating in vitro models of the human placenta. Advancements in the differentiation of human induced pluripotent stem cells (hiPSCs), microfluidics, and bioprinting have each contributed to the development of new models, which can be designed to closely match physiological in vivo conditions. By including relevant placental cell types and control over the microenvironment, these new in vitro models promise to reveal clues to the pathogenesis of placental dysfunction and facilitate drug testing across the maternal–fetal interface. In this minireview, we aim to highlight current in vitro placental models and their applications in the study of disease and discuss future avenues for these in vitro models.


2021 ◽  
Vol 22 (15) ◽  
pp. 7929
Author(s):  
Megan Chesnut ◽  
Thomas Hartung ◽  
Helena Hogberg ◽  
David Pamies

Neurodevelopment is uniquely sensitive to toxic insults and there are concerns that environmental chemicals are contributing to widespread subclinical developmental neurotoxicity (DNT). Increased DNT evaluation is needed due to the lack of such information for most chemicals in common use, but in vivo studies recommended in regulatory guidelines are not practical for the large-scale screening of potential DNT chemicals. It is widely acknowledged that developmental neurotoxicity is a consequence of disruptions to basic processes in neurodevelopment and that testing strategies using human cell-based in vitro systems that mimic these processes could aid in prioritizing chemicals with DNT potential. Myelination is a fundamental process in neurodevelopment that should be included in a DNT testing strategy, but there are very few in vitro models of myelination. Thus, there is a need to establish an in vitro myelination assay for DNT. Here, we summarize the routes of myelin toxicity and the known models to study this particular endpoint.


The Analyst ◽  
2021 ◽  
Author(s):  
Subhajit Chakraborty ◽  
Atanu Nandy ◽  
Subhadip Ghosh ◽  
Nirmal Kumar Das ◽  
Sameena Parveen ◽  
...  

Sub-nanomolar selective detection of Hg(ii) ions by protein (Human Serum Albumin, HSA) templated gold nanoclusters (AuNCs), both in in vitro as well as in vivo environments and specific endocytose behaviour towards breast cancer (BC) cell lines.


Sign in / Sign up

Export Citation Format

Share Document