Prader–Willi region non-protein coding RNA 1 suppressed gastric cancer growth as a competing endogenous RNA of miR-425-5p

2018 ◽  
Vol 132 (9) ◽  
pp. 1003-1019 ◽  
Author(s):  
Zihao Chen ◽  
Hongping Ju ◽  
Shan Yu ◽  
Ting Zhao ◽  
Xiaojie Jing ◽  
...  

Gastric cancer (GC) is one of the major global health problems, especially in Asia. Nowadays, long non-coding RNA (lncRNA) has gained significant attention in the current research climate such as carcinogenesis. This research desires to explore the mechanism of Prader–Willi region non-protein coding RNA 1 (PWRN1) on regulating GC process. Differentially expressed lncRNAs in GC tissues were screened out through microarray analysis. The RNA and protein expression level were detected by quantitative real-time PCR (qRT-PCR) and Western blot. Cell proliferation, apoptosis rate, metastasis abilities were respectively determined by cell counting kit 8 (CCK8), flow cytometry, wound healing, and transwell assay. The luciferase reporter system was used to verify the targetting relationships between PWRN1, miR-425-5p, and phosphatase and tensin homolog (PTEN). RNA-binding protein immunoprecipitation (RIP) assay was performed to prove whether PWRN1 acted as a competitive endogenous RNA (ceRNA) of miR-425-5p. Tumor xenograft model and immunohistochemistry (IHC) were developed to study the influence of PWRN1 on tumor growth in vivo. Microarray analysis determined that PWRN1 was differently expressed between GC tissues and adjacent tissues. qRT-PCR revealed PWRN1 low expression in GC tissues and cells. Up-regulated PWRN1 could reduce proliferation and metastasis and increase apoptosis in GC cells, while miR-425-5p had reverse effects. The RIP assay indicated that PWRN1 may target an oncogene, miR-425-5p. The tumor xenograft assay found that up-regulated PWRN1 suppressed the tumor growth. The bioinformatics analysis, luciferase assay, and Western blot indicated that PWRN1 affected PTEN/Akt/MDM2/p53 axis via suppressing miR-425-5p. Our findings suggested that PWRN1 functioned as a ceRNA targetting miR-425-5p and suppressed GC development via p53 signaling pathway.

2022 ◽  
Author(s):  
Zhaofeng Gao ◽  
Lingyu Hu ◽  
Fei Chen ◽  
Chunhua He ◽  
Biwen Hu ◽  
...  

Abstract Background:Gastric cancer (GC) is one of the most principle malignant cancers in the digestive system. Moreover, the critical role of circular RNAs (circRNAs) has been identified in GC development. Methods:In this context, the purpose of research was to explore the regulatory mechanism circ_0001013, a novel circRNAs predicted by our research, in GC. The differential circRNAs and related mechanism in GC were predicted by microarray analysis. Circ_0001013, miR-136, and TWSG1 expression in GC clinical samples and cells was detected by RT-qPCR. The relationship among circ_0001013, miR-136, and TWSG was assessed by dual-luciferase reporter assay, biotin coupled probe pull-down assay, and biotin coupled miRNA capture. After gain- and loss-of-function assays in GC cells, cell proliferation, migration, invasion, and cell cycle and apoptosis were measured by EdU assay, scratch test, Transwell assay, and flow cytometry respectively. The effect of circ_0001013 on tumor growth was detected by xenograft tumor in nude mice. Results :Microarray analysis predicted a novel circRNA, circ_0001013, was upregulated in GC, which was confirmed by RT-qPCR detection in GC tissues and cells. Besides, miR-136 was downregulated but TWSG1 was highly expressed in GC tissues. Mechanically, circ_0001013 could bind to miR-136, and miR-136 negatively targeted TWSG1 in GC cells. Silencing circ_0001013 or TWSG1 or overexpressing miR-136 decreased GC cell proliferation, migration, invasion, and cell cycle arrest and accelerated cell apoptosis. Circ_0001013 silencing decreased TWSG1 expression and inhibited transplanted tumor growth in nude mice. Conclusion:Circ_0001013 elevated TWSG1 expression by binding to miR-136, thereby exerting oncogenic effect in GC.


2021 ◽  
Author(s):  
Zhaofeng Gao ◽  
Lingyu Hu ◽  
Fei Chen ◽  
Chunhua He ◽  
Biwen Hu ◽  
...  

Abstract Background:Gastric cancer (GC) is one of the most principle malignant cancers in the digestive system. Moreover, the critical role of circular RNAs (circRNAs) has been identified in GC development. Methods:In this context, the purpose of research was to explore the regulatory mechanism circ_0001013, a novel circRNAs predicted by our research, in GC. The differential circRNAs and related mechanism in GC were predicted by microarray analysis. Circ_0001013, miR-136, and TWSG1 expression in GC clinical samples and cells was detected by RT-qPCR. The relationship among circ_0001013, miR-136, and TWSG was assessed by dual-luciferase reporter assay, biotin coupled probe pull-down assay, and biotin coupled miRNA capture. After gain- and loss-of-function assays in GC cells, cell proliferation, migration, invasion, and cell cycle and apoptosis were measured by EdU assay, scratch test, Transwell assay, and flow cytometry respectively. The effect of circ_0001013 on tumor growth was detected by xenograft tumor in nude mice. Results :Microarray analysis predicted a novel circRNA, circ_0001013, was upregulated in GC, which was confirmed by RT-qPCR detection in GC tissues and cells. Besides, miR-136 was downregulated but TWSG1 was highly expressed in GC tissues. Mechanically, circ_0001013 could bind to miR-136, and miR-136 negatively targeted TWSG1 in GC cells. Silencing circ_0001013 or TWSG1 or overexpressing miR-136 decreased GC cell proliferation, migration, invasion, and cell cycle arrest and accelerated cell apoptosis. Circ_0001013 silencing decreased TWSG1 expression and inhibited transplanted tumor growth in nude mice. Conclusion:Circ_0001013 elevated TWSG1 expression by binding to miR-136, thereby exerting oncogenic effect in GC.


2019 ◽  
Vol 47 (2) ◽  
pp. 926-935 ◽  
Author(s):  
Fang Wang

Objective MicroRNA-384 (miR-384) has been reported to function as a tumor suppressor in multiple cancers; however, its role in gastric cancer (GC) remains unclear. Methods We measured expression levels of miR-384 in GC cell lines and in a normal gastric cell line (GES-1). The association between miR-384 and the metadherin gene ( MTDH) was assessed by luciferase reporter assay and western blot. The effects of the miR-384/MTDH axis on GC cell behaviors were measured by CCK-8, wound-healing, and transwell invasion assays. Results miR-384 was significantly downregulated in GC cell lines compared with normal gastric cells. MTDH was identified as a direct target of miR-384 by bioinformatics analysis, luciferase assay, and western blot. Functional assays demonstrated that miR-384 inhibited GC cell proliferation, migration, and invasion through targeting MTDH. Conclusion These results reveal that miR-384 acts as a tumor suppressor in GC and suggest that the miR-384/MTDH axis may be a potential therapeutic target for GC.


2018 ◽  
Vol 50 (1) ◽  
pp. 261-276 ◽  
Author(s):  
Xiaobing Liu ◽  
Xing Luo ◽  
Yuqi Wu ◽  
Ding Xia ◽  
Wei Chen ◽  
...  

Background/Aims: Treatment options for metastatic castrate-resistant prostate cancer (mCRPC) are limited and typically centered on paclitaxel-based chemotherapy. In this study, we aimed to evaluate whether miR-34a attenuates chemoresistance to paclitaxel by regulating target genes associated with drug resistance. Methods: We used data from The Cancer Genome Atlas to compare miR-34a expression levels in prostate cancer (PC) tissues with normal prostate tissues. The effects of miR-34a inhibition and overexpression on PC proliferation were evaluated in vitro via Cell Counting Kit-8 (CCK-8) proliferation, colony formation, apoptosis, and cell-cycle assays. A luciferase reporter assay was employed to identify the interactions between miR-34a and specific target genes. To determine the effects of up-regulation of miR-34a on tumor growth and chemo-resistance in vivo, we injected PC cells overexpressing miR-34a into nude mice subcutaneously and evaluated the rate of tumor growth during paclitaxel treatment. We examined changes in the expression levels of miR-34a target genes JAG1 and Notch1 and their downstream genes via miR-34a transfection by quantitative reverse transcription PCR (qRT-PCR) and western blot assay. Results: miR-34a served as an independent predictor of reduced patient survival. MiR-34a was down-regulated in PC-3PR cells compared with PC-3 cells. The CCK-8 assay showed that miR-34a overexpression resulted in increased sensitivity to paclitaxel while miR-34a down-regulation resulted in chemoresistance to paclitaxel in vitro. A study of gain and loss in a series of functional assays revealed that PC cells expressing miR-34a were chemosensitive. Furthermore, the overexpression of miR-34a increased the sensitivity of PC-3PR cells to chemotherapy in vivo. The luciferase reporter assay confirmed that JAG1 and Notch1 were directly targeted by miR-34a. Interestingly, western blot analysis and qRT-PCR confirmed that miR-34a inhibited the Notch1 signaling pathway. We found that miR-34a increased the chemosensitivity of PC-3PR cells by directly repressing the TCF1/ LEF1 axis. Conclusion: Our results showed that miR-34a is involved in the development of chemosensitivity to paclitaxel. By regulating the JAG1/Notch1 axis, miR-34a or its target genes JAG1 or Notch1 might serve as potential predictive biomarkers of response to paclitaxel-based chemotherapy and/or therapeutic targets that will help to overcome chemoresistance at the mCRPC stage.


2020 ◽  
Author(s):  
Jixin Shou ◽  
Haidong Gao ◽  
Sen Cheng ◽  
Bingbing Wang ◽  
Haibo Guan

Abstract Background: LncRNA HOXA-AS2 has been found in the literature to deteriorate glioblastoma. However, its regulatory mechanism is yet to be fully investigated. Our study focused chiefly on the interaction and role of the HOXA-AS2/miR-885-5p/RBBP4 axis in the development of glioblastoma. Methods: qRT-PCR analysis was performed to detect the expression of lncRNA, miRNA and mRNA in glioblastoma tissues and cells. Dual-luciferase assay, RIP assay and RNA pull-down assay were later carried out to reveal the interactions among HOXA-AS2, miR-885-5p and RBBP4. After that, CCK-8 assay, BrdU assay, nude mice xenografting assay, western blot assay, and flow cytometry were carried out to analyze the effect of the HOXA-AS2/miR-885-5p/RBBP4 axis on glioblastoma samples. Results: HOXA-AS2 and RBBP4 were found to be overexpressed in glioblastoma. Experimental results showed that HOXA-AS2 and RBBP4 contributed to the tumorigenesis of glioblastoma cells. However, miR-885-5p was observed to be downregulated in glioblastoma. Findings also indicated that HOXA-AS2 could negatively regulate miR-885-5p, thereby enhancing RBBP4 expression. Conclusion: Overall, HOXA-AS2 promoted the tumorigenesis of glioblastoma by targeting and regulating miR-885-5p to induce the expression of RBBP4.


2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Chun-Wei Peng ◽  
Ling-Xiao Yue ◽  
Yuan-Qin Zhou ◽  
Sai Tang ◽  
Chen Kan ◽  
...  

Abstract Background miR-100 has been reported to closely associate with gastric cancer (GC) initiation and progression. However, the underlying mechanism of miR-100-3p in GC is still largely unclear. In this study, we intend to study how miR-100-3p regulates GC malignancy. Methods The expression levels of miR-100-3p in vitro (GES-1 and GC cell lines) and in vivo (cancerous and normal gastric tissues) were examined by quantitative real-time PCR (qRT-PCR). MTT and PE/Annexin V analyses were responsible for measurement of the effects of miR-100-3p on GC cell proliferation and apoptosis. Transwell assay with or without matrigel was used to examine the capacity of migration and invasion in GC cells. The interaction of miR-100-3p with bone morphogenetic protein receptor 2 (BMPR2) was confirmed through transcriptomics analysis and luciferase reporter assay. qRT-PCR and Western blot analyses were applied to determine the expression of ERK/AKT and Bax/Bcl2/Caspase3, which were responsible for the dysfunction of miR-100-3p. Results miR-100-3p was down-regulated in GC cell lines and cancerous tissues, and was negatively correlated with BMPR2. Loss of miR-100-3p promoted tumor growth and BMPR2 expression. Consistently, the effects of miR-100-3p inhibition on GC cells were partially neutralized by knockdown of BMPR2. Over-expression of miR-100-3p simultaneously inhibited tumor growth and down-regulated BMPR2 expression. Consistently, over-expression of BMPR2 partially neutralized the effects of miR-100-3p over-expression. Further study demonstrated that BMPR2 mediated the effects downstream of miR-100-3p, which might indirectly regulate ERK/AKT and Bax/Bcl2/Caspase3 signaling pathways. Conclusion miR-100-3p acted as a tumor-suppressor miRNA that down-regulated BMPR2, which consequently inhibited the ERK/AKT signaling and activated Bax/Bcl2/Caspase3 signaling. This finding provided novel insights into GC and could contribute to identify a new diagnostic and therapeutic target.


Author(s):  
Zihao Chen ◽  
Yong Li ◽  
Bibo Tan ◽  
Fang Li ◽  
Qun Zhao ◽  
...  

Gastric cancer (GC), as a common gastrointestinal tumor, is an important cause of death from cancer all around the world. Long non-coding RNAs (lncRNAs), a novel class of transcripts, have attracted great attention of researchers. However, the mechanisms of the clinical significance of most lncRNAs in human cancer are mainly undocumented. This research desires to explore the clinical significance, biological function, and mechanism of Lnc_ASNR (apoptosis suppressing-non-coding RNA) in GC. Cell proliferation, cell cycle, cell migration, and invasion abilities were respectively determined by 3-(4,5)-dimethylthiahiazo (-z-y1)-3,5-di-phenytetrazoliumromide (MTT), flow cytometry, wound healing, and Transwell assay (Sigma-Aldrich, St. Louis, MO, United States). The association of Lnc_ASNR, miR-519e-5p, and fibroblast growth factor receptor 2 (FGFR2) was evaluated via luciferase reporter experiments. The tumor xenograft assay was conducted to confirm the results of cell experiments. High expressed Lnc_ASNR was detected in both GC cells and tissues using qRT-PCR. Downregulated Lnc_ASNR could reduce proliferation, migration, and invasion in GC cells, while upregulated Lnc_ASNR could promote the cell proliferation, migration, and invasion. Moreover, the effect of Lnc_ASNR on migration and invasion ability is closely related to epithelial-mesenchymal transition (EMT). The bioinformatics analysis, luciferase assay, and Western blot demonstrated that Lnc_ASNR inhibited miR-519e-5p expression but increased FGFR2 expression. Lnc_ASNR and FGFR2 were both targeted to miR-519e-5p, and they were negatively correlated with the expression of miR-519e-5p. All investigations indicated that Lnc_ASNR functioned as a ceRNA targeting miR-519e-5p and facilitated GC development by regulating the pathway of miR-519e-5p/FGFR2.


2021 ◽  
Vol 11 ◽  
Author(s):  
Changyan Zou ◽  
Jinrong Liao ◽  
Dan Hu ◽  
Ying Su ◽  
Huamei Lin ◽  
...  

SNHG8, a family member of small nucleolar RNA host genes (SNHG), has been reported to act as an oncogene in gastric carcinoma (GC). However, its biological function in Epstein–Barr virus (EBV)-associated gastric cancer (EBVaGC) remains unclear. This study investigated the role of SNHG8 in EBVaGC. Sixty-one cases of EBVaGC, 20 cases of non-EBV-infected gastric cancer (EBVnGC), and relative cell lines were studied for the expression of SNHG8 and BHRF1 (BCL2 homolog reading frame 1) encoded by EBV with Western blot and qRT-PCR assays. The relationship between the expression levels of SNHG8 and the clinical outcome in 61 EBVaGC cases was analyzed. Effects of overexpression or knockdown of BHRF1, SNHG8, or TRIM28 on cell proliferation, migration, invasion, and cell cycle and the related molecules were determined by several assays, including cell proliferation, colony assay, wound healing assay, transwell invasion assay, cell circle with flow cytometry, qRT-PCR, and Western blot for expression levels. The interactions among SNHG8, miR-512-5p, and TRIM28 were determined with Luciferase reporter assay, RNA immunoprecipitation (RIP), pull-down assays, and Western blot assay. The in vivo activity of SNHG8 was assessed with SNHG8 knockdown tumor xenografts in zebrafish. Results demonstrated that the following. (1) BHRF1 and SNHG8 were overexpressed in EBV-encoded RNA 1-positive EBVaGC tissues and cell lines. BHRF1 upregulated the expressions of SNHG8 and TRIM28 in AGS. (2) SNHG8 overexpression had a significant correlation with tumor size and vascular tumor thrombus. Patients with high SNHG8 expression had poorer overall survival (OS) compared to those with low SNHG8 expression. (3) SNHG8 overexpression promoted EBVaGC cell proliferation, migration, and invasion in vitro and in vivo, cell cycle arrested at the G2/M phase via the activation of BCL-2, CCND1, PCNA, PARP1, CDH1, CDH2 VIM, and Snail. (4) Results of dual-luciferase reporter assay, RNA immunoprecipitation, and pull-down assays indicated that SNHG8 sponged miR-512-5p, which targeted on TRIM28 and promoted cancer malignant behaviors of EBVaGC cells. Our data suggest that BHRF1 triggered the expression of SNHG8, which sponged miR-512-5p and upregulated TRIM28 and a set of effectors (such as BCL-2, CCND1, CDH1, CDH2 Snail, and VIM) to promote EBVaGC tumorigenesis and invasion. SNHG8 could be an independent prognostic factor for EBVaGC and sever as target for EBVaGC therapy.


2020 ◽  
Author(s):  
Ting Wang ◽  
Zhiqiang Wu ◽  
Yifeng Bi ◽  
Haitao Sun ◽  
Zhipeng Wu ◽  
...  

Abstract BackgroundMalignant melanoma is the leading cause of skin cancer-related death. The role of PARVB in malignant melanoma remains unclear. Hypoxia is a hallmark of solid tumors including melanoma. But the regulation role of hypoxia in PARVB expression has not been reported.MethodsHuman malignant melanoma tissues, cell lines and their controls were collected. IHC staining, qRT-PCR and Western blot were performed to reveal the differential PARVB expression. The role of PARVB in tumor growth and metastasis of malignant melanoma was evaluated in vitro and in vivo. The regulation role and mechanism of hypoxia and HIFs in PARVB expression was validated by qRT-PCR, Western blot, ChIP-PCR and Luciferase reporter assays.ResultsPARVB was upregulated in malignant melanoma and correlated with patient survival. OverexpressionofPARVB promoted tumor growth and metastasis of malignant melanoma. Furthermore, hypoxia induced HIF-1α and HIF-2α expression activated PARVB transcription and expression through binding to the specific hypoxia-responsive element (HRE) in the promoter region of PARVB.ConclusionsIn malignant melanoma, Hypoxia induced HIF-1α and HIF-2α expression could directly activate PARVB expression, which further promoted tumor growth and metastasis, inducing poor prognosis. These results indicated that PARVB might be a potential therapeutic target for malignant melanoma.


2018 ◽  
Vol 49 (5) ◽  
pp. 1933-1942 ◽  
Author(s):  
Peng-Cheng Kang ◽  
Kai-Ming Leng ◽  
Yue-Ping Liu ◽  
Yang Liu ◽  
Yi Xu ◽  
...  

Background/Aims: Cholangiocarcinoma (CCA) is one of the most common malignant tumors of the biliary tract originating from biliary epithelial cells. Although many therapeutic strategies have been developed to treat CCA, the survival rate for CCA patients is still quite low. Thus it is urgent to elucidate the pathogenesis of CCA and to explore novel therapeutic targets. miR-191 has been shown to be associated with many human solid cancers, but the function of miR-191 in CCA is still poorly understood. Methods: We first investigated the expression level of miR-191 in human CCA tissues and cell lines with quantitative real-time PCR (qRT-PCR). The effects of miR-191 on CCA cells were determined by Cell Counting Kit-8 assay, colony formation assay and acridine orange/ethidium bromide staining. Finally, we utilized qRT-PCR, western blot and luciferase reporter assays to verify the miR-191 target gene. Results: We showed that miR-191 was up-regulated in CCA cell lines and patients. Knockdown of miR-191 by transfection of its inhibitor sequence blocked RBE cells viability and induced apoptosis of RBE cells. Both qRT-PCR and western blot analysis showed that the secreted frizzled-related protein-1 (sFRP1) level was negatively correlated with that of miR-191. Luciferase assay validated that sFRP1 was a direct target of miR-191. Moreover, knockdown of miR-191 led to suppression of Wnt/β-catenin signaling activation. Co-transfection of sFRP1 small interfering RNA (siRNA) and miR-191 inhibitor re-activated the Wnt/β-catenin signaling pathway as detected by an increased level of β-catenin and phosphorylation of GSK-3β, and restored the expression of survivin and c-myc in RBE cells. Co-transfection of sFRP1 siRNA with miR-191 inhibitor restored the colony formation ability and viability of RBE cells. Conclusion: Taken together, our results demonstrate a novel insight into miR-191 biological function in CCA. Our findings suggest that miR-191 is a potential therapeutic target of CCA treatment.


Sign in / Sign up

Export Citation Format

Share Document