scholarly journals Hsa_Circular RNA_0001013 Exerts Oncogenice Effects in Gastric Cancer Via the microRNA-136/TWSG1 Axis

Author(s):  
Zhaofeng Gao ◽  
Lingyu Hu ◽  
Fei Chen ◽  
Chunhua He ◽  
Biwen Hu ◽  
...  

Abstract Background:Gastric cancer (GC) is one of the most principle malignant cancers in the digestive system. Moreover, the critical role of circular RNAs (circRNAs) has been identified in GC development. Methods:In this context, the purpose of research was to explore the regulatory mechanism circ_0001013, a novel circRNAs predicted by our research, in GC. The differential circRNAs and related mechanism in GC were predicted by microarray analysis. Circ_0001013, miR-136, and TWSG1 expression in GC clinical samples and cells was detected by RT-qPCR. The relationship among circ_0001013, miR-136, and TWSG was assessed by dual-luciferase reporter assay, biotin coupled probe pull-down assay, and biotin coupled miRNA capture. After gain- and loss-of-function assays in GC cells, cell proliferation, migration, invasion, and cell cycle and apoptosis were measured by EdU assay, scratch test, Transwell assay, and flow cytometry respectively. The effect of circ_0001013 on tumor growth was detected by xenograft tumor in nude mice. Results :Microarray analysis predicted a novel circRNA, circ_0001013, was upregulated in GC, which was confirmed by RT-qPCR detection in GC tissues and cells. Besides, miR-136 was downregulated but TWSG1 was highly expressed in GC tissues. Mechanically, circ_0001013 could bind to miR-136, and miR-136 negatively targeted TWSG1 in GC cells. Silencing circ_0001013 or TWSG1 or overexpressing miR-136 decreased GC cell proliferation, migration, invasion, and cell cycle arrest and accelerated cell apoptosis. Circ_0001013 silencing decreased TWSG1 expression and inhibited transplanted tumor growth in nude mice. Conclusion:Circ_0001013 elevated TWSG1 expression by binding to miR-136, thereby exerting oncogenic effect in GC.

2021 ◽  
Author(s):  
Zhaofeng Gao ◽  
Lingyu Hu ◽  
Fei Chen ◽  
Chunhua He ◽  
Biwen Hu ◽  
...  

Abstract Background:Gastric cancer (GC) is one of the most principle malignant cancers in the digestive system. Moreover, the critical role of circular RNAs (circRNAs) has been identified in GC development. Methods:In this context, the purpose of research was to explore the regulatory mechanism circ_0001013, a novel circRNAs predicted by our research, in GC. The differential circRNAs and related mechanism in GC were predicted by microarray analysis. Circ_0001013, miR-136, and TWSG1 expression in GC clinical samples and cells was detected by RT-qPCR. The relationship among circ_0001013, miR-136, and TWSG was assessed by dual-luciferase reporter assay, biotin coupled probe pull-down assay, and biotin coupled miRNA capture. After gain- and loss-of-function assays in GC cells, cell proliferation, migration, invasion, and cell cycle and apoptosis were measured by EdU assay, scratch test, Transwell assay, and flow cytometry respectively. The effect of circ_0001013 on tumor growth was detected by xenograft tumor in nude mice. Results :Microarray analysis predicted a novel circRNA, circ_0001013, was upregulated in GC, which was confirmed by RT-qPCR detection in GC tissues and cells. Besides, miR-136 was downregulated but TWSG1 was highly expressed in GC tissues. Mechanically, circ_0001013 could bind to miR-136, and miR-136 negatively targeted TWSG1 in GC cells. Silencing circ_0001013 or TWSG1 or overexpressing miR-136 decreased GC cell proliferation, migration, invasion, and cell cycle arrest and accelerated cell apoptosis. Circ_0001013 silencing decreased TWSG1 expression and inhibited transplanted tumor growth in nude mice. Conclusion:Circ_0001013 elevated TWSG1 expression by binding to miR-136, thereby exerting oncogenic effect in GC.


2020 ◽  
Author(s):  
Jiancheng Lv ◽  
Zijian Zhou ◽  
Jingzi Wang ◽  
Xiao Yang ◽  
Hao Yu ◽  
...  

Abstract Background: Circular RNAs (circRNAs) are noncoding RNAs that have the structure of a covalently closed loop. Increasing data has proved that circRNA can influence the development and progression of tumors. CircFAM114A2 is generated from several exons of FAM114A2. However, the function and mechanisms of circFAM114A2 in bladder cancer (BCa) remain unclear. This research aimed to reveal that circFAM114A2 inhibits bladder cancer progression and improves sensitivity of cisplatin chemotherapy by inducing G1/S cell cycle arrest via novel miR-222-3p/P27 and miR-146a-5p/P21 cascades.Methods: Here, to elucidate the potential roles of circFAM114A2 in BCa, we conducted RNA-sequencing on 5 pairs of BCa samples and screened for circRNAs. CircRNAs, microRNAs (miRNAs) and mRNAs, as well as levels of P27 and P21, in human cells and tissues were detected by qRT-PCR and western blot, respectively. CircRNA-miRNA interactions and miRNA-downstream mRNAs interactions were investigated by RNA pull-down assay and fluorescence in situ hybridization (FISH) or luciferase reporter assays, respectively. Then, the function of circFAM114A2 in BCa was explored using cell proliferation, cell cycle and tumorigenesis assays in nude mice. Finally, the function of circFAM114A2 in cisplatin chemo-sensitivity in BCa was detected by IC50 and tumor formation of xenograft in cisplatin-treated nude mice. Results: We discovered that circFAM114A2 levels were decreased in BCa cell lines and tissues. According to follow-up data, BCa patients with higher circFAM114A2 expression had better survival. Importantly, the levels of circFAM114A2 were associated with the histological grade of BCa. Overexpression of circFAM114A2 inhibited cell proliferation and increased sensitivity to cisplatin chemotherapy. Mechanistically, circFAM114A2 directly sponged miR-222-3p/miR-146a-5p and subsequently influenced the expression of the downstream target genes P27/P21, which, in turn, inhibited progression of BCa.Conclusions: CircFAM114A2 acted as a tumor suppressor through a novel circFAM114A2/miR-222-3p/P27 and circFAM114A2/miR-146a-5p/P21 pathway. CircFAM1142 has therefore great potential as a prognostic biomarker and therapeutic target for BCa.


2021 ◽  
Vol 53 (4) ◽  
pp. 454-462
Author(s):  
Ting Li ◽  
Xiaomin Zuo ◽  
Xiangling Meng

Abstract Circular RNAs (circRNAs) play either oncogenic or tumor suppressive roles in gastric cancer (GC). A previous study demonstrated that circ_002059, a typical circRNA, was downregulated in GC tissues. However, the role and mechanism of circ_002059 in GC development are still unknown. In this study, the levels of circ_002059, miR-182, and metastasis suppressor-1 (MTSS1) were examined by real-time quantitative polymerase chain reaction and western blot analysis. Cell proliferation and migration were evaluated by MTT assay and Transwell migration assay, respectively. The interactions between miR-182 and circ_002059 or MTSS1 were analyzed by dual-luciferase reporter assay. A GC xenograft model was established to validate the role of circ_002059 in GC progression in vivo. Overexpression of circ_002059 significantly inhibited, whereas knockdown of circ_002059 notably facilitated, cell proliferation and migration in GC cells. MTSS1 was found to be a direct target of miR-182 and circ_002059 upregulated MTSS1 expression by competitively sponging miR-182. Transfection with miR-182 mimic and MTSS1 silencing abated the inhibitory effect of circ_002059 on GC progression. Circ_002059 inhibited GC cell xenograft tumor growth by regulating miR-182 and MTSS1 expression. Collectively, Circ_002059 inhibited GC cell proliferation and migration in vitro and xenograft tumor growth in mice, by regulating the miR-182/MTSS1 axis.


2021 ◽  
Vol 7 (5) ◽  
pp. 3997-4004
Author(s):  
Zhibo Zou ◽  
Lin Peng

Objective: This study aimed to probe into the effect of LncRNA SNHG14 on ovarian cancer progression by regulating miR-206.Methods: Fifty-seven ovarian cancer (OC) patients who were treated in our hospital from December 2017 to December 2019 were collected as the research objects. During the operation, OC tissues and paracancerous tissues of patients were collected, and the effect of SNHG14 on OC tumor growth in nude mice was detected, and SNHG14 inhibitor was transfected into OC cells. The relative expression of SNHG14 in tissues and cells was detected by qRT-PCR, cell proliferation was testedvia CCK8, migration and invasion were detected through Transwell, apoptosis was assessedvia flow cytometry, and the targeted relationship between SNHG14 and miR-206 was detected by dual luciferase reporter gene.Results: SNHG14 is highly expressed in OC tissues, cells and nude mice. Down-regulating it can inhibit the biological ability of OC cells and inhibit the growth of nude mice tumors. It can directly target miR-206 to regulate CCND1 expression and promote OC progression.Conclusion: LncRNA SNHG14 can act as miR-206 sponge to regulate CCND1 expression downstream of miR-206 and promote OC progression.


2018 ◽  
Vol 132 (9) ◽  
pp. 1003-1019 ◽  
Author(s):  
Zihao Chen ◽  
Hongping Ju ◽  
Shan Yu ◽  
Ting Zhao ◽  
Xiaojie Jing ◽  
...  

Gastric cancer (GC) is one of the major global health problems, especially in Asia. Nowadays, long non-coding RNA (lncRNA) has gained significant attention in the current research climate such as carcinogenesis. This research desires to explore the mechanism of Prader–Willi region non-protein coding RNA 1 (PWRN1) on regulating GC process. Differentially expressed lncRNAs in GC tissues were screened out through microarray analysis. The RNA and protein expression level were detected by quantitative real-time PCR (qRT-PCR) and Western blot. Cell proliferation, apoptosis rate, metastasis abilities were respectively determined by cell counting kit 8 (CCK8), flow cytometry, wound healing, and transwell assay. The luciferase reporter system was used to verify the targetting relationships between PWRN1, miR-425-5p, and phosphatase and tensin homolog (PTEN). RNA-binding protein immunoprecipitation (RIP) assay was performed to prove whether PWRN1 acted as a competitive endogenous RNA (ceRNA) of miR-425-5p. Tumor xenograft model and immunohistochemistry (IHC) were developed to study the influence of PWRN1 on tumor growth in vivo. Microarray analysis determined that PWRN1 was differently expressed between GC tissues and adjacent tissues. qRT-PCR revealed PWRN1 low expression in GC tissues and cells. Up-regulated PWRN1 could reduce proliferation and metastasis and increase apoptosis in GC cells, while miR-425-5p had reverse effects. The RIP assay indicated that PWRN1 may target an oncogene, miR-425-5p. The tumor xenograft assay found that up-regulated PWRN1 suppressed the tumor growth. The bioinformatics analysis, luciferase assay, and Western blot indicated that PWRN1 affected PTEN/Akt/MDM2/p53 axis via suppressing miR-425-5p. Our findings suggested that PWRN1 functioned as a ceRNA targetting miR-425-5p and suppressed GC development via p53 signaling pathway.


2020 ◽  
Author(s):  
Yeting Hong ◽  
Wei He ◽  
Jianbin Zhang ◽  
Lu Shen ◽  
Chong Yu ◽  
...  

Abstract Background: Cyclin D3-CDK6 complex is a component of the core cell cycle machinery that regulates cell proliferation. By using Human Protein Atlas database, a higher expression level of this complex was found in gastric cancer. However, the function of this complex in gastric cancer remain poorly understood. This study aims to determine the expression pattern of this complex in gastric cancer and to investigate its biological role during tumorigenesis.Methods: To demonstrate that Cyclin D3-CDK6 regulate the c-Myc/miR-15a/16 axis in a feedback loop in gastric cancer, a series of methods were conducted both in vitro and in vivo experiments, including qRT-PCR, western blot analysis, EdU assay, flow cytometry, luciferase reporter assay and immunohistochemical staining. SPSS and Graphpad prism software were used for data analysis.Results: In this study, we found that Cyclin D3 and CDK6 were significantly upregulated in gastric cancer and correlated with poorer overall survival. Further study proved that this complex significantly promoted cell proliferation and cell cycle progression in vitro and accelerated xenografted tumor growth in vivo. Furthermore, we explored the molecular mechanisms through which the complex mediated Rb phosphorylation and then promoted c-Myc expression in vitro, we also found c-Myc could suppress miR-15a/16 expression in gastric cancer cell. Finally, we found that miR-15a/16 can simultaneously regulate Cyclin D3 and CDK6 expression as direct target genes.Conclusions: Our findings uncover the Cyclin D3-CDK6/c-Myc/miR-15a/16 feedback loop axis as a pivotal role in the regulation of gastric cancer tumorigenesis, and this regulating axis may provide a potential therapeutic target for gastric cancer treatment.


2020 ◽  
Author(s):  
Gaowu Hu ◽  
Wei Peng ◽  
Yongqing Cao

Abstract Background: Currently, more and more circular RNAs (circRNAs) have been identified to exert their functions in tumor progression, including colorectal cancer (CRC). However, the role of circSEC24A (circ_0003528) in CRC remains unknown.Methods: Quantitative real-time polymerase chain reaction (qRT-PCR) was conducted to determine the levels of circSEC24A, SEC24A and microRNA-488-3p (miR-488-3p). The characterization of circSEC24A was investigated by Actinomycin D and RNase R digestion assays. 3-(4, 5-dimethyl-2-thiazolyl)-2, 5-diphenyl-2-H-tetrazolium bromide (MTT) assay was used to assess cell proliferation. Flow cytometry analysis was adopted for cell apoptosis and cell cycle process. Transwell assay was employed to evaluate cell migration and invasion. Western blot assay was performed to determine protein levels. Dual-luciferase reporter assay was utilized to explore the relationship between miR-488-3p and circSEC24A or transmembrane protein 106B (TMEM106B). Murine xenograft model was constructed to explore the effect of circSEC24A in vivo .Results: CircSEC24A level was increased in CRC tissues and cells. CircSEC24A deficiency impeded cell proliferation, cell cycle process, migration and invasion and induced apoptosis in CRC cells in vitro and blocked tumorigenesis in vivo . MiR-488-3p was a target of circSEC24A and miR-488-3p was downregulated in CRC tissues and cells. The inhibitory effect of circSEC24A silencing on CRC cell progression was restored by miR-488-3p inhibition. Moreover, TMEM106B could be negatively regulated by miR-488-3p via acting as a downstream gene of miR-488-3p. MiR-488-3p overexpression decelerated CRC cell progression by targeting TMEM106B.Conclusion: CircSEC24A facilitated CRC progression by regulating miR-488-3p/TMEM106B axis, which might provide a promising treatment approach for CRC.


2020 ◽  
Vol 10 ◽  
Author(s):  
Linsheng Huang ◽  
Junxiang Han ◽  
Huifan Yu ◽  
Jialing Liu ◽  
Lili Gui ◽  
...  

BackgroundPancreatic cancer is a fatal disease with a very poor prognosis due to its characteristic insidious symptoms, early metastasis, and chemoresistance. Circular RNAs (circRNAs) are involved in the development of pancreatic cancer.AimHence, the aim of this study is to elucidate the mechanism of circRNA_000864 in regulating BTG2 expression in pancreatic cancer by binding to miR-361-3p.MethodsCircRNA_000864, miR-361-3p, and BTG2 expression patterns in the pancreatic cancer tissues were detected by RT-qPCR. Correlation among circRNA_000864, miR-361-3p, and BTG2 was evaluated by RNA-pull down assay, RNA Immunoprecipitation assay, and dual-luciferase reporter gene assay. After ectopic expression and depletion experiments, 5-ethynyl-2′-deoxyuridine assay, Transwell assay, and flow cytometry were employed to assess the cell proliferation, migration and invasion, cell cycle, and apoptosis. Xenotransplantation of nude mice was conducted to detect the effects of circRNA_000864, miR-361-3p, and BTG2 on tumor growth.ResultsCircRNA_000864 and BTG2 were poorly expressed, and miR-361-3p was highly expressed in the pancreatic cancer tissues. CircRNA_000864 bound to miR-361-3p could target BTG2. Cell proliferation, migration, and invasion were inhibited, and the cell cycle arrest and apoptosis were stimulated after overexpression of circRNA_000864 or BTG2 or downregulation of miR-361-3p. Overexpression of circRNA_000864 or downregulation of miR-361-3p also decreased the tumor growth in vivo.ConclusionsConjointly, our findings elicited that the overexpression of circRNA_000864 could promote BTG2 expression to inhibit pancreatic cancer development by binding to miR-361-3p, which represents an appealing therapeutic target for the treatment of pancreatic cancer.


2019 ◽  
Vol 23 (3) ◽  
pp. 437-448 ◽  
Author(s):  
Zizhen Zhang ◽  
Chaojie Wang ◽  
Yeqian Zhang ◽  
Site Yu ◽  
Gang Zhao ◽  
...  

Abstract Background Circular RNAs (circRNAs) as a novel subgroup of non-coding RNAs act a critical role in the pathogenesis of gastric cancer (GC). However, the underlying mechanisms by which hsa_circ_0003855 (circDUSP16) contributes to GC are still undocumented. Materials The differentially expressed circRNAs were identified by GEO database. The association of circDUSP16 or miR-145-5p expression with clinicopathological features and prognosis in GC patients was analyzed by FISH and TCGA-seq data set. Loss- and gain-of-function experiments as well as a xenograft tumor model were performed to assess the role of circDUSP16 in GC cells. circDUSP16-specific binding with miR-145-5p was confirmed by bioinformatic analysis, luciferase reporter, and RNA immunoprecipitation assays. Results The expression levels of circDUSP16 were markedly increased in GC tissue samples and acted as an independent prognostic factor of poor survival in patients with GC. Knockdown of circDUSP16 repressed the cell viability, colony formation, and invasive potential in vitro and in vivo, but ectopic expression of circDUSP16 reversed these effects. Moreover, circDUSP16 possessed a co-localization with miR-145-5p in the cytoplasm, and acted as a sponge of miR-145-5p, which attenuated circDUSP16-induced tumor-promoting effects and IVNS1ABP expression in GC cells. MiR-145-5p had a negative correlation with circDUSP16 expression and its low expression was associated with poor survival in GC patients. Conclusions CircDUSP16 facilitates the tumorigenesis and invasion of GC cells by sponging miR-145-5p, and may provide a novel therapeutic target for GC.


2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Wen-Li Liu ◽  
Hu-xia Wang ◽  
Cheng-xin Shi ◽  
Fei-yu Shi ◽  
Ling-yu Zhao ◽  
...  

Abstract Background MicroRNAs (miRNAs) play key roles in tumorigenesis and progression of gastric cancer (GC). miR-1269 has been reported to be upregulated in several cancers and plays a crucial role in carcinogenesis and cancer progression. However, the biological function of miR-1269 in human GC and its mechanism remain unclear and need to be further elucidated. Methods The expression of miR-1269 in GC tissues and cell lines was detected by quantitative real-time PCR (qRT-PCR). Target prediction programs (TargetScanHuman 7.2 and miRBase) and a dual-luciferase reporter assay were used to confirm that Ras-association domain family 9 (RASSF9) is a target gene of miR-1269. The expression of RASSF9 was measured by qRT-PCR and Western blotting in GC tissues. MTT and cell counting assays were used to explore the effect of miR-1269 on GC cell proliferation. The cell cycle and apoptosis were measured by flow cytometry. RASSF9 knockdown and overexpression were used to further verify the function of the target gene. Results We found that miR-1269 expression was upregulated in human GC tissues and cell lines. The overexpression of miR-1269 promoted GC cell proliferation and cell cycle G1-S transition and suppressed apoptosis. The inhibition of miR-1269 inhibited cell growth and G1-S transition and induced apoptosis. miR-1269 expression was inversely correlated with RASSF9 expression in GC tissues. RASSF9 was verified to be a direct target of miR-1269 by using a luciferase reporter assay. The overexpression of miR-1269 decreased RASSF9 expression at both the mRNA and protein levels, and the inhibition of miR-1269 increased RASSF9 expression. Importantly, silencing RASSF9 resulted in the same biological effects in GC cells as those induced by overexpression of miR-1269. Overexpression of RASSF9 reversed the effects of miR-1269 overexpression on GC cells. Both miR-1269 overexpression and RASSF9 silencing activated the AKT signaling pathway, which modulated cell cycle regulators (Cyclin D1 and CDK2). In contrast, inhibition of miR-1269 and RASSF9 overexpression inhibited the AKT signaling pathway. Moreover, miR-1269 and RASSF9 also regulated the Bax/Bcl-2 signaling pathway. Conclusions Our results demonstrate that miR-1269 promotes GC cell proliferation and cell cycle G1-S transition by activating the AKT signaling pathway and inhibiting cell apoptosis via regulation of the Bax/Bcl-2 signaling pathway by targeting RASSF9. Our findings indicate an oncogenic role of miR-1269 in GC pathogenesis and the potential use of miR-1269 in GC therapy.


Sign in / Sign up

Export Citation Format

Share Document