Neutral endopeptidase inhibitors blunt kidney fibrosis by reducing myofibroblast formation

2019 ◽  
Vol 133 (2) ◽  
pp. 239-252 ◽  
Author(s):  
Roel Bijkerk ◽  
Marina A. Aleksinskaya ◽  
Jacques M.G.J. Duijs ◽  
Jennifer Veth ◽  
Bettina Husen ◽  
...  

Abstract Kidney fibrosis is the common pathophysiological mechanism in end-stage renal disease characterized by excessive accumulation of myofibroblast-derived extracellular matrix. Natriuretic peptides have been demonstrated to have cyclic guanosine monophosphate (cGMP)-dependent anti-fibrotic properties likely due to interference with pro-fibrotic tissue growth factor β (TGF-β) signaling. However, in vivo, natriuretic peptides are rapidly degraded by neutral endopeptidases (NEP). In a unilateral ureteral obstruction (UUO) mouse model for kidney fibrosis we assessed the anti-fibrotic effects of SOL1, an orally active compound that inhibits NEP and endothelin-converting enzyme (ECE). Mice (n=10 per group) subjected to UUO were treated for 1 week with either solvent, NEP-/ECE-inhibitor SOL1 (two doses), reference NEP-inhibitor candoxatril or the angiotensin II receptor type 1 (AT1)-antagonist losartan. While NEP-inhibitors had no significant effect on blood pressure, they did increase urinary cGMP levels as well as endothelin-1 (ET-1) levels. Immunohistochemical staining revealed a marked decrease in renal collagen (∼55% reduction, P<0.05) and α-smooth muscle actin (α-SMA; ∼40% reduction, P<0.05). Moreover, the number of α-SMA positive cells in the kidneys of SOL1-treated groups inversely correlated with cGMP levels consistent with a NEP-dependent anti-fibrotic effect. To dissect the molecular mechanisms associated with the anti-fibrotic effects of NEP inhibition, we performed a ‘deep serial analysis of gene expression (Deep SAGE)’ transcriptome and targeted metabolomics analysis of total kidneys of all treatment groups. Pathway analyses linked increased cGMP and ET-1 levels with decreased nuclear receptor signaling (peroxisome proliferator-activated receptor [PPAR] and liver X receptor/retinoid X receptor [LXR/RXR] signaling) and actin cytoskeleton organization. Taken together, although our transcriptome and metabolome data indicate metabolic dysregulation, our data support the therapeutic potential of NEP inhibition in the treatment of kidney fibrosis via cGMP elevation and reduced myofibroblast formation.

2021 ◽  
Vol 135 (16) ◽  
pp. 1999-2029
Author(s):  
Sandra Rayego-Mateos ◽  
Sofia Campillo ◽  
Raúl R. Rodrigues-Diez ◽  
Antonio Tejera-Muñoz ◽  
Laura Marquez-Exposito ◽  
...  

Abstract Chronic kidney disease (CKD) is characterized by pathological accumulation of extracellular matrix (ECM) proteins in renal structures. Tubulointerstitial fibrosis is observed in glomerular diseases as well as in the regeneration failure of acute kidney injury (AKI). Therefore, finding antifibrotic therapies comprises an intensive research field in Nephrology. Nowadays, ECM is not only considered as a cellular scaffold, but also exerts important cellular functions. In this review, we describe the cellular and molecular mechanisms involved in kidney fibrosis, paying particular attention to ECM components, profibrotic factors and cell–matrix interactions. In response to kidney damage, activation of glomerular and/or tubular cells may induce aberrant phenotypes characterized by overproduction of proinflammatory and profibrotic factors, and thus contribute to CKD progression. Among ECM components, matricellular proteins can regulate cell–ECM interactions, as well as cellular phenotype changes. Regarding kidney fibrosis, one of the most studied matricellular proteins is cellular communication network-2 (CCN2), also called connective tissue growth factor (CTGF), currently considered as a fibrotic marker and a potential therapeutic target. Integrins connect the ECM proteins to the actin cytoskeleton and several downstream signaling pathways that enable cells to respond to external stimuli in a coordinated manner and maintain optimal tissue stiffness. In kidney fibrosis, there is an increase in ECM deposition, lower ECM degradation and ECM proteins cross-linking, leading to an alteration in the tissue mechanical properties and their responses to injurious stimuli. A better understanding of these complex cellular and molecular events could help us to improve the antifibrotic therapies for CKD.


2018 ◽  
Vol 30 (1) ◽  
pp. 33-49 ◽  
Author(s):  
Petros Andrikopoulos ◽  
Julius Kieswich ◽  
Sabrina Pacheco ◽  
Luxme Nadarajah ◽  
Steven Michael Harwood ◽  
...  

BackgroundDuring kidney fibrosis, a hallmark and promoter of CKD (regardless of the underlying renal disorder leading to CKD), the extracellular-regulated kinase 1/2 (ERK1/2) pathway, is activated and has been implicated in the detrimental differentiation and expansion of kidney fibroblasts. An ERK1/2 pathway inhibitor, trametinib, is currently used in the treatment of melanoma, but its efficacy in the setting of CKD and renal fibrosis has not been explored.MethodsWe investigated whether trametinib has antifibrotic effects in two mouse models of renal fibrosis—mice subjected to unilateral ureteral obstruction (UUO) or fed an adenine-rich diet—as well as in cultured primary human fibroblasts. We also used immunoblot analysis, immunohistochemical staining, and other tools to study underlying molecular mechanisms for antifibrotic effects.ResultsTrametinib significantly attenuated collagen deposition and myofibroblast differentiation and expansion in UUO and adenine-fed mice. We also discovered that in injured kidneys, inhibition of the ERK1/2 pathway by trametinib ameliorated mammalian target of rapamycin complex 1 (mTORC1) activation, another key profibrotic signaling pathway. Trametinib also inhibited the ERK1/2 pathway in cultured primary human renal fibroblasts stimulated by application of TGF-β1, the major profibrotic cytokine, thereby suppressing downstream mTORC1 pathway activation. Additionally, trametinib reduced the expression of myofibroblast marker α-smooth muscle actin and the proliferation of renal fibroblasts, corroborating our in vivo data. Crucially, trametinib also significantly ameliorated renal fibrosis progression when administered to animals subsequent to myofibroblast activation.ConclusionsFurther study of trametinib as a potential candidate for the treatment of chronic renal fibrotic diseases of diverse etiologies is warranted.


2019 ◽  
Vol 29 (6) ◽  
pp. 521-528
Author(s):  
Lingli Huang ◽  
Lingwei Huang ◽  
Ziwei Li ◽  
Qing Wei

2020 ◽  
Vol 26 ◽  
Author(s):  
Nimra Javaid ◽  
Muhammad Ajmal Shah ◽  
Azhar Rasul ◽  
Zunera Chauhdary ◽  
Uzma Saleem ◽  
...  

: Neurodegeneration is a multifactorial process involved the different cytotoxic pathways that lead towards neuronal cell death. Alzheimer’s disease (AD) is a persistent neurodegenerative disorder that normally has a steady onset yet later on it worsens. The documented evidence of AD neuropathology manifested the neuro-inflammation, increased reactive oxygen, nitrogen species and decreased antioxidant protective process; mitochondrial dysfunction as well as increased level of acetylcholinesterase activity. Moreover, enhanced action of proteins leads towards neural apoptosis which have a vital role in the degeneration of neurons. The inability of commercial therapeutic options to treat AD with targeting single mechanism leads the attraction towards organic drugs. Ellagic acid is a dimer of gallic acid, latest studies expressed that ellagic acid can initiate the numerous cell signaling transmission and decrease the progression of disorders, involved in the degeneration of neurons. The influential property of ellagic acid to protect the neurons in neurodegenerative disorders is due to its antioxidant effect, iron chelating and mitochondrial protective effect. The main goal of this review is to critically analyze the molecular mode of action of ellagic acid against neurodegeneration.


2019 ◽  
Vol 14 (3) ◽  
pp. 219-225 ◽  
Author(s):  
Cong Tang ◽  
Guodong Zhu

The nuclear factor kappa B (NF-κB) consists of a family of transcription factors involved in the regulation of a wide variety of biological responses. Growing evidence support that NF-κB plays a major role in oncogenesis as well as its well-known function in the regulation of immune responses and inflammation. Therefore, we made a review of the diverse molecular mechanisms by which the NF-κB pathway is constitutively activated in different types of human cancers and the potential role of various oncogenic genes regulated by this transcription factor in cancer development and progression. We also discussed various pharmacological approaches employed to target the deregulated NF-κB signaling pathway and their possible therapeutic potential in cancer therapy. Moreover, Syk (Spleen tyrosine kinase), non-receptor tyrosine kinase which mediates signal transduction downstream of a variety of transmembrane receptors including classical immune-receptors like the B-cell receptor (BCR), which can also activate the inflammasome and NF-κB-mediated transcription of chemokines and cytokines in the presence of pathogens would be discussed as well. The highlight of this review article is to summarize the classic and novel signaling pathways involved in NF-κB and Syk signaling and then raise some possibilities for cancer therapy.


2021 ◽  
Vol 22 (4) ◽  
pp. 1861
Author(s):  
Jemima Seidenberg ◽  
Mara Stellato ◽  
Amela Hukara ◽  
Burkhard Ludewig ◽  
Karin Klingel ◽  
...  

Background: Pathological activation of cardiac fibroblasts is a key step in development and progression of cardiac fibrosis and heart failure. This process has been associated with enhanced autophagocytosis, but molecular mechanisms remain largely unknown. Methods and Results: Immunohistochemical analysis of endomyocardial biopsies showed increased activation of autophagy in fibrotic hearts of patients with inflammatory cardiomyopathy. In vitro experiments using mouse and human cardiac fibroblasts confirmed that blockade of autophagy with Bafilomycin A1 inhibited fibroblast-to-myofibroblast transition induced by transforming growth factor (TGF)-β. Next, we observed that cardiac fibroblasts obtained from mice overexpressing transcription factor Fos-related antigen 2 (Fosl-2tg) expressed elevated protein levels of autophagy markers: the lipid modified form of microtubule-associated protein 1A/1B-light chain 3B (LC3BII), Beclin-1 and autophagy related 5 (Atg5). In complementary experiments, silencing of Fosl-2 with antisense GapmeR oligonucleotides suppressed production of type I collagen, myofibroblast marker alpha smooth muscle actin and autophagy marker Beclin-1 in cardiac fibroblasts. On the other hand, silencing of either LC3B or Beclin-1 reduced Fosl-2 levels in TGF-β-activated, but not in unstimulated cells. Using a cardiac hypertrophy model induced by continuous infusion of angiotensin II with osmotic minipumps, we confirmed that mice lacking either Fosl-2 (Ccl19CreFosl2flox/flox) or Atg5 (Ccl19CreAtg5flox/flox) in stromal cells were protected from cardiac fibrosis. Conclusion: Our findings demonstrate that Fosl-2 regulates autophagocytosis and the TGF-β-Fosl-2-autophagy axis controls differentiation of cardiac fibroblasts. These data provide a new insight for the development of pharmaceutical targets in cardiac fibrosis.


Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3418
Author(s):  
Grzegorz Grześk ◽  
Alicja Nowaczyk

For years, guanylate cyclase seemed to be homogenic and tissue nonspecific enzyme; however, in the last few years, in light of preclinical and clinical trials, it became an interesting target for pharmacological intervention. There are several possible options leading to an increase in cyclic guanosine monophosphate concentrations. The first one is related to the uses of analogues of natriuretic peptides. The second is related to increasing levels of natriuretic peptides by the inhibition of degradation. The third leads to an increase in cyclic guanosine monophosphate concentration by the inhibition of its degradation by the inhibition of phosphodiesterase type 5. The last option involves increasing the concentration of cyclic guanosine monophosphate by the additional direct activation of soluble guanylate cyclase. Treatment based on the modulation of guanylate cyclase function is one of the most promising technologies in pharmacology. Pharmacological intervention is stable, effective and safe. Especially interesting is the role of stimulators and activators of soluble guanylate cyclase, which are able to increase the enzymatic activity to generate cyclic guanosine monophosphate independently of nitric oxide. Moreover, most of these agents are effective in chronic treatment in heart failure patients and pulmonary hypertension, and have potential to be a first line option.


Cells ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1628
Author(s):  
Kaj E. C. Blokland ◽  
Habibie Habibie ◽  
Theo Borghuis ◽  
Greta J. Teitsma ◽  
Michael Schuliga ◽  
...  

Idiopathic pulmonary fibrosis (IPF) is a devastating lung disease with poor survival. Age is a major risk factor, and both alveolar epithelial cells and lung fibroblasts in this disease exhibit features of cellular senescence, a hallmark of ageing. Accumulation of fibrotic extracellular matrix (ECM) is a core feature of IPF and is likely to affect cell function. We hypothesize that aberrant ECM deposition augments fibroblast senescence, creating a perpetuating cycle favouring disease progression. In this study, primary lung fibroblasts were cultured on control and IPF-derived ECM from fibroblasts pretreated with or without profibrotic and prosenescent stimuli, and markers of senescence, fibrosis-associated gene expression and secretion of cytokines were measured. Untreated ECM derived from control or IPF fibroblasts had no effect on the main marker of senescence p16Ink4a and p21Waf1/Cip1. However, the expression of alpha smooth muscle actin (ACTA2) and proteoglycan decorin (DCN) increased in response to IPF-derived ECM. Production of the proinflammatory cytokines C-X-C Motif Chemokine Ligand 8 (CXCL8) by lung fibroblasts was upregulated in response to senescent and profibrotic-derived ECM. Finally, the profibrotic cytokines transforming growth factor β1 (TGF-β1) and connective tissue growth factor (CTGF) were upregulated in response to both senescent- and profibrotic-derived ECM. In summary, ECM deposited by IPF fibroblasts does not induce cellular senescence, while there is upregulation of proinflammatory and profibrotic cytokines and differentiation into a myofibroblast phenotype in response to senescent- and profibrotic-derived ECM, which may contribute to progression of fibrosis in IPF.


Sign in / Sign up

Export Citation Format

Share Document