scholarly journals Novel evidence for apoptotic cell response and differential signals in chromatin condensation and DNA cleavage in victorin-treated oats

2001 ◽  
Vol 28 (1) ◽  
pp. 13-26 ◽  
Author(s):  
Nan Yao ◽  
Yasuomi Tada ◽  
Pyoyun Park ◽  
Hitoshi Nakayashiki ◽  
Yukio Tosa ◽  
...  
2001 ◽  
Vol 79 (11) ◽  
pp. 953-958 ◽  
Author(s):  
Ellyawati Candra ◽  
Kimihiro Matsunaga ◽  
Hironori Fujiwara ◽  
Yoshihiro Mimaki ◽  
Yutaka Sashida ◽  
...  

Two steroidal saponins, tigogenin hexasaccharide-1 (TGHS-1, (25R)-5α-spirostan-3β-yl 4-O-[2-O-[3-O- (α-L-rhamnopyranosyl)-β-D-glucopyranosyl]-3-O-[4-O-(α-L-rhamnopyranosyl)-β-D-glucopyranosyl]-β-D-glucopyranosyl]- β-D-galactopyranoside) and tigogenin hexasaccharide-2 (TGHS-2, (25R)-5α-spirostan-3β-yl 4-O-[2-O-[3-O- (β-D-glucopyranosyl)-β-D-glucopyranosyl]-3-O-[4-O-(α-L-rhamnopyranosyl)-β-D-glucopyranosyl]-β-D-glucopyranosyl]- β-D-galactopyranoside), were isolated from the fresh bulbs of Camassia cusickii. In murine leukemic L1210 cells, both compounds showed cytotoxicity with an EC50 value of 0.06 µM. The morphological observation revealed that TGHS-1 and TGHS-2 induced shrinkage in cell soma and chromatin condensation, suggesting apoptotic cell death. The cell death was confirmed to be apoptosis by Annexin V binding to phosphatidylserine in the cell membrane and excluding propidium iodide. A typical apoptotic DNA ladder and the cleavage of caspase-3 were observed after treatment with TGHS-1 and TGHS-2. In the presence of both the compounds, cells with sub-G1 DNA content were detected by flow cytometric analysis, indicating that TGHS-1 and TGHS-2 (each EC50 value of 0.1 µM) are the most powerful apoptotic saponins known. These results suggest that TGHS-1 and TGHS-2 induce apoptotic cell death through caspase-3 activation.Key words: steroidal saponin, tigogenin hexasaccharide, apoptosis, DNA fragmentation, murine leukemic L1210 cells.


1993 ◽  
Vol 71 (9-10) ◽  
pp. 488-500 ◽  
Author(s):  
Valerie M. Weaver ◽  
Boleslaw Lach ◽  
P. Roy Walker ◽  
Marianna Sikorska

Three chemically distinct serine, but not cysteine, protease inhibitors (phenylmethylsulphonyl fluoride, N-tosyl-L-phenylalanylchloromethyl ketone and 3,4-dichloroisocoumarin) prevented, in a dose-dependent manner, the characteristic apoptotic internucleosomal DNA cleavage (DNA ladder) typically observed in thymocytes in response to dexamethasone and teniposide VM-26. This effect was not the result of a direct inhibition of the Ca2+, Mg2+-dependent endonuclease, since oligonucleosomal DNA cleavage occurred in the presence of these inhibitors in isolated nuclei. The proteolytic step occurred at a very early stage of apoptosis, and preincubation of thymocytes with the inhibitors before dexamethasone or teniposide VM-26 were added irreversibly suppressed ladder formation. This implied that the cellular effector(s) of these compounds preexisted and were not resynthesized in response to the inducers of apoptosis. Serine protease inhibitors also suppressed apoptotic cell shrinkage and complete nuclear collapse, suggesting that these morphological changes were directly related to internucleosomal fragmentation of DNA. However, the serine protease inhibitors did not prevent high molecular weight DNA cleavage (> 50 kilobases) that preceded the ladder formation and thymocytes still died by apoptosis. This supported the view that internucleosomal DNA cleavage, considered to be the biochemical marker of apoptosis, might in fact be a late and dispensable step and that the newly described high molecular weight DNA cleavage might be a better indicator of apoptosis.Key words: serine protease, apoptosis, internucleosomal DNA fragmentation, high molecular weight DNA cleavage, protease inhibitors.


2019 ◽  
Vol 47 (01) ◽  
pp. 237-257 ◽  
Author(s):  
En-Yun Su ◽  
Yung-Lin Chu ◽  
Fu-Shin Chueh ◽  
Yi-Shih Ma ◽  
Shu-Fen Peng ◽  
...  

The aim of this study was to investigate the effects of bufalin on human nasopharyngeal carcinoma NPC-TW 076 cells in vitro. Bufalin is a cardiotonic steroid and a key active ingredient of the Chinese medicine ChanSu. The extracts of Chansu are used for various cancer treatments in China. In the present study, bufalin induced cell morphological changes, decreased total cell viability and induced G2/M phase arrest of cell cycle in NPC-TW 076 cells. Results also indicated that bufalin induced chromatin condensation (cell apoptosis) and DNA damage by DAPI staining and comet assay, respectively. The induced apoptotic cell death was further confirmed by annexin-V/PI staining assay. In addition, bufalin also increased ROS and Ca[Formula: see text] production and decreased the levels of [Formula: see text]. Furthermore, the alterations of ROS, ER stress and apoptosis associated protein expressions were investigated by Western blotting. Results demonstrated that bufalin increased the expressions of ROS associated proteins, including SOD (Cu/Zn), SOD2 (Mn) and GST but decreased that of catalase. Bufalin increased ER stress associated proteins (GRP78, IRE-1[Formula: see text], IRE-1[Formula: see text], caspase-4, ATF-6[Formula: see text], Calpain 1, and GADD153). Bufalin increased the pro-apoptotic proteins Bax, and apoptotic associated proteins (cytochrome c, caspase-3, -8 and -9, AIF and Endo G) but reduced anti-apoptotic protein Bcl-2 in NPC-TW 076 cells. Furthermore, bufalin elevated the expressions of TRAIL-pathway associated proteins (TRAIL, DR4, DR5, and FADD). Based on these findings, we suggest bufalin induced apoptotic cell death via caspase-dependent, mitochondria-dependent and TRAIL pathways in human nasopharyngeal carcinoma NPC-TW 076 cells.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 3972-3972
Author(s):  
George T. Roberts ◽  
Muhammad A. Chishti ◽  
Fallah H. Al-Mohanna ◽  
Raafat M. El-Sayed ◽  
Abderezak Bouchama

Abstract Introduction: Ultrastructural evidence of endothelial cell (EC) injury has been associated with diffuse microvascular thrombosis in human heatstroke (HS). In vitro studies have also shown that heat stress accelerates apoptotic cell death. Using a recently described baboon model of heatstroke, we sought to examine pathological changes in the vascular endothelium and whether apoptosis is a mechanism of endothelial cell death. Hypothesis: Major structural vascular endothelium alterations occur in HS and apoptosis is a mechanism of endothelial cell death in HS. Methods: Anesthetized baboons (Papio hamadyras) were heat-stressed in a neonatal incubator maintained at 44 1.5 °C, until rectal temperature attained 42.5°C (moderate heatstroke; n =4) or systolic blood pressure fell to < 90 mm Hg (severe heatstroke n =4). Animals were resuscitated with normal saline and allowed to cool at room temperature. Four sham-heated animals served as control group. Spleen, liver, heart, kidney, gut, lung and adrenal tissue were obtained either by immediate autopsy in non-survivors or after euthanasia at 72-h for survivors. Vascular endothelium ultrastructure was evaluated by transmission electron microscopy (TEM) of ultra-thin tissue sections. Biological activity of EC was determined by light microscopy (LM) using a polyclonal antibody targeting von Willebrand Factor (vWF). Apoptosis was assessed, also in tissue sections, by deoxyuridine triphosphate nick end-labeling (TUNEL) procedure. Results: In heatstroke animals, there were marked EC changes in lungs, spleen, jejunum, kidneys and liver, demonstrated by TEM, as increased cytoplasmic membrane convolutions that included formation of villi projecting into the vessel lumina, and increase in the width of the gaps between ECs. Migration of neutrophils, platelets and erythrocytes through these widened gaps was noted. Weibel-Palade bodies were increased both in size and number in EC of jejunum, lungs and kidneys. This increase correlated with increased endothelial expression of immunologically detectable vWF. TEM also showed that there was increased apoptosis manifested by nuclear chromatin condensation and karyorrhexis and formation of cytoplasmic myelin whorls. Increased EC apoptosis was also observed by TUNEL in the jejunum, lungs, liver and spleen. All these changes were greater in animals with severe HS than in animals with moderate HS, whereas sham heated control animals showed no significant changes. Conclusion: Widespread EC injury with apoptotic cell death is consistent with the hypothesis that the endothelium may play a pathogenic role in heatstroke.


1996 ◽  
Vol 320 (3) ◽  
pp. 855-863 ◽  
Author(s):  
Hideaki KANETO ◽  
Junichi FUJII ◽  
Theingi MYINT ◽  
Nobuko MIYAZAWA ◽  
Kazi N. ISLAM ◽  
...  

Several reducing sugars brought about apoptosis in isolated rat pancreatic islet cells and in the pancreatic β-cell-derived cell line HIT. This apoptosis was characterized biochemically by internucleosomal DNA cleavage and morphologically by nuclear shrinkage, chromatin condensation and apoptotic body formation. N-Acetyl-l-cysteine, an antioxidant, and aminoguanidine, an inhibitor of the glycation reaction, inhibited this apoptosis. We also showed directly that proteins in β-cells were actually glycated by using an antibody which can specifically recognize proteins glycated by fructose, but not by glucose. Furthermore, fluorescence-activated cell sorting analysis using dichlorofluorescein diacetate showed that reducing sugars increased intracellular peroxide levels prior to the induction of apoptosis. Levels of carbonyl, an index of oxidative modification, and of malondialdehyde, a lipid peroxidation product, were also increased. Taken together, these results suggest that reducing sugars trigger oxidative modification and apoptosis in pancreatic β-cells by provoking oxidative stress mainly through the glycation reaction, which may explain the deterioration of β-cells under conditions of diabetes.


2008 ◽  
Vol 2008 ◽  
pp. 1-16 ◽  
Author(s):  
Qun Ren ◽  
Hui Yang ◽  
Bifeng Gao ◽  
Zhaojie Zhang

Cohesin is a protein complex that regulates sister chromatid cohesin during cell division. Malfunction in chromatid cohesin results in chromosome missegregation and aneuploidy. Here, we report that mutations of MCD1 and PDS5, two major components of cohesin in budding yeast, cause apoptotic cell death, which is characterized by externalization of phosphatidylserine at cytoplasmic membrane, chromatin condensation and fragmentation, and ROS production. Microarray analysis suggests that the cell death caused by mutation of MCD1 or PDS5 is due to the internal stress response, contrasting to the environmental or external stress response induced by external stimuli, such as hydrogen peroxide. A common feature shared by the internal stress response and external stress response is the response to stimulus, including response to DNA damage, mitochondria functions, and oxidative stress, which play an important role in yeast apoptotic cell death.


1996 ◽  
Vol 16 (2) ◽  
pp. 186-194 ◽  
Author(s):  
C. Charriaut-Marlangue ◽  
I. Margaill ◽  
A. Represa ◽  
T. Popovici ◽  
M. Plotkine ◽  
...  

Apoptosis is one of the two forms of cell death and occurs under a variety of physiological and pathological conditions. Cells undergoing apoptotic cell death reveal a characteristic sequence of cytological alterations including membrane blebbing and nuclear and cytoplasmic condensation. Early activation of an endonuclease has been previously demonstrated after a transient focal ischemia in the rat brain ( Charriaut-Marlangue C, Margaill I, Plotkine M, Ben-Ari Y (1995) Early endonuclease activation following reversible focal ischemia. J Cereb Blood Flow Metab 15:385–388). We now show that a significant number of striatal and cortical neurons exhibited chromatin condensation, nucleus segmentation, and apoptotic bodies increasing with recirculation time, as demonstrated by in situ labeling of DNA breaks in cryostat sections. Apoptotic nuclei were also detected in the horizontal limb diagonal band, accumbens nucleus and islands of Calleja. Several necrotic neurons, in which random DNA fragmentation occurs, were also shown at 6 h recirculation, in the ischemic core. Further investigation with hematoxylin/eosin staining revealed that apoptotic nuclei were present in cells with a large and swelled cytoplasm and in cells with an apparently well-preserved cytoplasm. These two types of cell death were reminiscent of those described in developmental cell death. Our data suggested that apoptosis may contribute to the expansion of the ischemic lesion.


1999 ◽  
Vol 354 (1389) ◽  
pp. 1591-1599 ◽  
Author(s):  
K. Samejima ◽  
P. Villa ◽  
W. C. Earnshaw

We used cytoplasmic extracts from chicken DU249 cells at various stages along the apoptotic pathway to analyse the events of apoptotic exe–cution. So–called S/M extracts from morphologically normal ‘committed–stage’ cells induce apoptotic morphology and DNA cleavage in substrate nuclei. These apoptotic changes appear to require the function of multiple caspases (cysteine aspar–tases, a specialized class of proteases) acting in parallel. Extracts from ‘execution–stage’ apoptotic cells induce apoptotic events in added nuclei in a caspase–independent manner. Biochemical frac–tionation of these extracts reveals that a column fraction enriched in endogenous active caspases is un–able to induce DNA fragmentation or chromatin condensation in substrate nuclei, whereas a caspase–depleted fraction induces both changes. ‘Execution–stage’ extracts contain an ICAD/DFF45–inhibitable nuclease resembling CAD, plus another activity that is required for the apoptotic chromatin condensation. ‘Committed–stage’ S/M extracts lack these downstream activities. These observations reveal that caspases act in an executive fashion, serving to activate downstream factors that disassemble the nucleus rather than disassembling it themselves. They also suggest that activation of the downstream factors (rather than the caspases) is the critical event that occurs at the transition from the latent to the execution phase of apoptosis.


Blood ◽  
1996 ◽  
Vol 87 (6) ◽  
pp. 2411-2418 ◽  
Author(s):  
K Taga ◽  
A Yamauchi ◽  
K Kabashima ◽  
ET Bloom ◽  
J Muller ◽  
...  

Activated human natural killer (NK) cells undergo rapid apoptotic cell death after ligand binding to the Fc receptor (CD16). We examined whether human NK cells die after engagement in cytolytic functions. Peripheral blood NK cells, with and without prior activation in vitro with interleukin-2 (IL-2), were tested for the occurrence of cell death after incubation with K562, the prototype NK-sensitive target cell. A proportion (15.2%) of NK cells that were stimulated for 3 days with IL- 2 and then incubated for 4 hours with K562 cells showed rapid cell death, but NK cells not stimulated with IL-2 did not. This cell death was found to involve nuclear condensation and fragmentation and DNA cleavage, all of which are characteristic of apoptosis. These data indicate that a proportion of activated human NK cells undergo apoptosis as they engage in target cell lysis. Target-induced NK cell death may represent an important mechanism for regulation of inflammatory processes involving NK cells.


2001 ◽  
Vol 29 (3) ◽  
pp. 243-249 ◽  
Author(s):  
Petr Mlejnek

The role of caspase proteases in carbonyl cyanide m-chlorophenylhydrazone (CCCP)-induced apoptosis of human promyelocytic HL-60 cells was examined. Treatment of HL-60 cells with micromolar concentrations of CCCP resulted in cell death, with typical apoptotic features such as chromatin condensation, formation of apoptotic bodies, nucleosomal fragmentation of DNA and a distinct increase in caspase-3 activity. The results, however, indicated that full caspase-3 inhibition by the selective inhibitor N-benzyloxycarbonyl-Asp-Glu-Val-Asp fluoromethyl ketone (Z-DEVD-FMK) did not prevent cell death, nor did it affect the manifestation of apoptotic hallmarks, including apoptotic bodies formation and nucleosomal DNA fragmentation. The only distinct effect that Z-DEVD-FMK exhibited was to retard the disruption of the plasma membrane. We therefore assume that caspase-3 activity itself is not essential for the manifestation of apoptotic features mentioned above. Similarly, the pan-specific caspase inhibitor N-benzyloxycarbonyl-Val-Ala-Asp fluoromethyl ketone (Z-VAD-FMK) did not prevent cell death. On the contrary, Z-VAD-FMK completely prevented DNA cleavage and apoptotic body formation, but it failed to completely counteract chromatin condensation. Thus, in the presence of Z-VAD-FMK, application of CCCP concentrations that otherwise induced apoptosis, resulted in the appearance of two morphologically different groups of dead cells with intact DNA. The first group included cells with necrotic-like nuclear morphology, and therefore could be taken as being “truly” necrotic in nature, because they had intact DNA. The cells of the second group formed small single-spherical nuclei with condensed chromatin. In spite of having intact DNA, they could not be taken as “truly” necrotic cells. It is evident that in the experimental system, caspase proteases play an essential role in the formation of apoptotic bodies and in the cleavage of nucleosomal DNA, but not in the condensation of chromatin. Therefore, it is likely that the choice between cell death modalities is not solely a matter of the caspase proteases present.


Sign in / Sign up

Export Citation Format

Share Document