scholarly journals The surprisingly carbon-rich environment of the S-type star W Aql,

2020 ◽  
Vol 642 ◽  
pp. A20
Author(s):  
E. De Beck ◽  
H. Olofsson

Context. W Aql is an asymptotic giant branch (AGB) star with an atmospheric elemental abundance ratio C/O ≈ 0.98. It has previously been reported to have circumstellar molecular abundances intermediate between those of M-type and C-type AGB stars, which respectively have C/O < 1 and C/O > 1. This intermediate status is considered typical for S-type stars, although our understanding of the chemical content of their circumstellar envelopes is currently rather limited. Aims. We aim to assess the reported intermediate status of W Aql by analysing the line emission of molecules that have never before been observed towards this star. Methods. We performed observations in the frequency range 159−268 GHz with the SEPIA/B5 and PI230 instruments on the APEX telescope. We made abundance estimates through direct comparison to available spectra towards a number of well-studied AGB stars and based on rotational diagram analysis in the case of one molecule. Results. From a compilation of our abundance estimates and those found in the literature for two M-type (R Dor, IK Tau), two S-type (χ Cyg, W Aql), and two C-type stars (V Aql, IRC +10 216), we conclude that the circumstellar environment of W Aql appears considerably closer to that of a C-type AGB star than to that of an M-type AGB star. In particular, we detect emission from C2H, SiC2, SiN, and HC3N, molecules previously only detected towards the circumstellar environment of C-type stars. This conclusion, based on the chemistry of the gaseous component of the circumstellar environment, is further supported by reports in the literature on the presence of atmospheric molecular bands and spectral features of dust species which are typical for C-type AGB stars. Although our observations mainly trace species in the outer regions of the circumstellar environment, our conclusion matches closely that based on recent chemical equilibrium models for the inner wind of S-type stars: the atmospheric and circumstellar chemistry of S-type stars likely resembles that of C-type AGB stars much more closely than that of M-type AGB stars. Conclusions. Further observational investigation of the gaseous circumstellar chemistry of S-type stars is required to characterise its dependence on the atmospheric C/O. Non-equilibrium chemical models of the circumstellar environment of AGB stars need to address the particular class of S-type stars and the chemical variety that is induced by the range in atmospheric C/O.

2018 ◽  
Vol 14 (S343) ◽  
pp. 483-484
Author(s):  
Nimesh A. Patel ◽  
Carl Gottlieb ◽  
Ken Young ◽  
Tomasz Kaminski ◽  
Michael McCarthy ◽  
...  

AbstractCarbon-rich Asymptotic Giant Branch (AGB) stars are major sources of gas and dust in the interstellar medium. During the brief (∼1000 yr) period in the evolution from AGB to the Planetary Nebula (PN) stage, the molecular composition evolves from mainly diatomic and small polyatomic species to more complex molecules. Using the Submillimeter Array (SMA), we have carried out a spectral line survey of CRL 618, covering a frequency range of 281.9 to 359.4 GHz. More than 1000 lines were detected in the ∼60 GHz range, most of them assigned to HC3N and c-C3H2, and their isotopologues. About 200 lines are unassigned. Lines of CO, HCO+, and CS show the fast outflow wings, while the majority of line emission arises from a compact region of ∼1” diameter. We have analyzed the lines of HC3N, c-C3H2, CH3CN, and their isotopologues with rotation temperature diagrams.


2019 ◽  
Vol 623 ◽  
pp. L1 ◽  
Author(s):  
T. Khouri ◽  
L. Velilla-Prieto ◽  
E. De Beck ◽  
W. H. T. Vlemmings ◽  
H. Olofsson ◽  
...  

Aims. We characterise the gas in the extended atmospheres of the oxygen-rich asymptotic giant branch (AGB) stars W Hya and R Dor using high angular resolution ALMA observations. Methods. We report the detection and investigate the properties of high-excitation Λ-doubling line emission of hydroxyl (OH). Results. The OH lines are produced very close to the central stars and seem optically thin and with no maser effect. We analyse the molecular excitation using a population diagram and find rotational temperatures of ∼2500 K and column densities of ∼1019 cm−2 for both sources. For W Hya, we observe emission from vibrationally excited H2O arising from the same region as the OH emission. Moreover, CO v = 1, J = 3 − 2 emission also shows a brightness peak in the same region. Considering optically thin emission and the rotational temperature derived for OH, we find a CO column density ∼15 times higher than that of OH, within an area of (92 × 84) mas2 centred on the OH emission peak. These results should be considered tentative because of the simple methods employed. The observed OH line frequencies differ significantly from the predicted transition frequencies in the literature, and provide the possibility of using OH lines observed in AGB stars to improve the accuracy of the Hamiltonian used for the OH molecule. We predict stronger OH Λ-doubling lines at millimetre wavelengths than those we detected. These lines will be a good probe of shocked gas in the extended atmosphere and are possibly even suitable as probes of the magnetic field in the atmospheres of close-by AGB stars through the Zeeman effect.


2018 ◽  
Vol 611 ◽  
pp. A29 ◽  
Author(s):  
S. Massalkhi ◽  
M. Agúndez ◽  
J. Cernicharo ◽  
L. Velilla Prieto ◽  
J. R. Goicoechea ◽  
...  

Context. Silicon carbide dust is ubiquitous in circumstellar envelopes around C-rich asymptotic giant branch (AGB) stars. However, the main gas-phase precursors leading to the formation of SiC dust have not yet been identified. The most obvious candidates among the molecules containing an Si–C bond detected in C-rich AGB stars are SiC2, SiC, and Si2C. To date, the ring molecule SiC2 has been observed in a handful of evolved stars, while SiC and Si2C have only been detected in the C-star envelope IRC +10216.Aim. We aim to study how widespread and abundant SiC2, SiC, and Si2C are in envelopes around C-rich AGB stars, and whether or not these species play an active role as gas-phase precursors of silicon carbide dust in the ejecta of carbon stars.Methods. We carried out sensitive observations with the IRAM 30 m telescope of a sample of 25 C-rich AGB stars to search for emission lines of SiC2, SiC, and Si2C in the λ 2 mm band. We performed non-LTE excitation and radiative transfer calculations based on the LVG method to model the observed lines of SiC2 and to derive SiC2 fractional abundances in the observed envelopes.Results. We detect SiC2 in most of the sources, SiC in about half of them, and do not detect Si2C in any source except IRC +10216. Most of these detections are reported for the first time in this work. We find a positive correlation between the SiC and SiC2 line emission, which suggests that both species are chemically linked; the SiC radical is probably the photodissociation product of SiC2 in the external layer of the envelope. We find a clear trend where the denser the envelope, the less abundant SiC2 is. The observed trend is interpreted as evidence of efficient incorporation of SiC2 onto dust grains, a process that is favored at high densities owing to the higher rate at which collisions between particles take place.Conclusions. The observed behavior of a decline in the SiC2 abundance with increasing density strongly suggests that SiC2 is an important gas-phase precursor of SiC dust in envelopes around carbon stars.


2019 ◽  
Vol 15 (S350) ◽  
pp. 253-256
Author(s):  
M. Van de Sande ◽  
T. Danilovich ◽  
L. Decin

AbstractThe outflows of asymptotic giant branch (AGB) stars are important astrochemical laboratories, rich in molecular material and host to various chemical processes, including dust formation. Since the different chemistries are relatively easily probed, AGB outflows are ideal testbeds within the wider astrochemical community. Recent observations are pushing the limits of both our current chemical models and radiative transfer routines. Current chemical models are restricted by the completeness of their chemical networks and the accuracy of the reaction rates. The molecular abundances retrieved by radiative transfer routines are strongly dependent on collisional rates, which are often not measured or calculated for molecules of interest. To further our understanding of the chemistry within the outflow, collaboration with the laboratory astrophysics community is essential. This collaboration is mutually beneficial, as it in turn provides new science questions for laboratory experiments and computations.


2019 ◽  
Vol 623 ◽  
pp. A128 ◽  
Author(s):  
C. J. Hansen ◽  
T. T. Hansen ◽  
A. Koch ◽  
T. C. Beers ◽  
B. Nordström ◽  
...  

Carbon-enhanced metal-poor (CEMP) stars span a wide range of stellar populations, from bona fide second-generation stars to later-forming stars that provide excellent probes of binary mass transfer and stellar evolution. Here we analyse 11 metal-poor stars (8 of which are new to the literature), and demonstrate that 10 are CEMP stars. Based on high signal-to-noise ratio (S/N) X-shooter spectra, we derive abundances of 20 elements (C, N, O, Na, Mg, Ca, Sc, Ti, Cr, Mn, Fe, Ni, Sr, Y, Ba, La, Ce, Pr, Nd, and Eu). From the high-S/N spectra, we were able to trace the chemical contribution of the rare earth elements (REE) from various possible production sites, finding a preference for metal-poor low-mass asymptotic giant branch (AGB) stars of 1.5 M⊙ in CEMP-s stars, while CEMP-r/s stars may indicate a more massive AGB contribution (2–5 M⊙). A contribution from the r-process – possibly from neutron star–neutron star mergers (NSM) – is also detectable in the REE stellar abundances, especially in the CEMP-r/s sub-group rich in both slow(s) and rapid(r) neutron-capture elements. Combining spectroscopic data with Gaia DR2 astrometric data provides a powerful chemodynamical tool for placing CEMP stars in the various Galactic components, and classifying CEMP stars into the four major elemental-abundance sub-groups, which are dictated by their neutron-capture element content. The derived orbital parameters indicate that all but one star in our sample (and the majority of the selected literature stars) belong to the Galactic halo. These stars exhibit a median orbital eccentricity of 0.7, and are found on both prograde and retrograde orbits. We find that the orbital parameters of CEMP-no and CEMP-s stars are remarkably similar in the 98 stars we study. A special case is the CEMP-no star HE 0020−1741, with very low Sr and Ba content, which possesses the most eccentric orbit among the stars in our sample, passing close to the Galactic centre. Finally, we propose an improved scheme to sub-classify the CEMP stars, making use of the Sr/Ba ratio, which can also be used to separate very metal-poor stars from CEMP stars. We explore the use of [Sr/Ba] versus [Ba/Fe] in 93 stars in the metallicity range −4.2 ≲ [Fe/H] <  −2. We show that the Sr/Ba ratio can also be successfully used for distinguishing CEMP-s, CEMP-r/s, and CEMP-no stars. Additionally, the Sr/Ba ratio is found to be a powerful astro-nuclear indicator, since the metal-poor AGB stars exhibit very different Sr/Ba ratios compared to fast-rotating massive stars and NSM, and is also reasonably unbiased by NLTE and 3D corrections.


1997 ◽  
Vol 180 ◽  
pp. 313-318 ◽  
Author(s):  
L.B.F.M. Waters ◽  
C. Waelkens ◽  
H. Van Winckel

Low and intermediate mass stars leave the Asymptotic Giant Branch (AGB) when the mass in their H-rich envelope is less than about 0.01 M⊙, and the high mass loss drops several orders of magnitude. The central star rapidly evolves to the left part of the HR diagram along a track of constant luminosity (e.g. Schönberner 1983). In principle the evolution of the central star to higher Teff and the expansion and cooling of the AGB remnant are easy to calculate. In practice several complicating factors arise which make it much more difficult to predict the morphology and properties of post-AGB stars, such as binarity, post-AGB mass loss and aspherical AGB mass loss. Binarity of post-AGB stars affects the morphology of the circumstellar environment, and it affects evolutionary timescales and surface chemical abundances of the components in the system. This review discusses some properties of binary post-AGB stars.


2020 ◽  
Vol 496 (1) ◽  
pp. 36-48 ◽  
Author(s):  
S M Percival ◽  
P A James

ABSTRACT We present a spectroscopic analysis of the central disc regions of barred spiral galaxies, concentrating on the region that is swept by the bar but not including the bar itself (the ‘star formation desert’ or SFD region). New spectroscopy is presented for 34 galaxies, and the full sample analysed comprises 48 SBa–SBcd galaxies. These data confirm the full suppression of SF within the SFD regions of all but the latest type (SBcd) galaxies. However, diffuse [N ii] and H α line emission is detected in all galaxies. The ubiquity and homogeneous properties of this emission from SBa to SBc galaxies favour post-asymptotic giant branch (p-AGB) stars as the source of this line excitation, rather than extreme blue horizontal branch stars. The emission-line ratios strongly exclude any contribution from recent SF, but are fully consistent with recent population synthesis modelling of p-AGB emission by other authors, and favour excitation dominated by ambient gas of approximately solar abundance, rather than ejecta from the AGB stars themselves. The line equivalent widths are also larger than those observed in many fully passive (e.g. elliptical) galaxies, which may also be a consequence of a greater ambient gas density in the SFD regions.


2018 ◽  
Vol 14 (S343) ◽  
pp. 460-461
Author(s):  
S. Massalkhi ◽  
M. Agúndez ◽  
J. Cernicharo

AbstractThe synthesis of dust grains mostly takes place in the circumstellar envelopes (CSEs) of asymptotic giant branch (AGB) stars. What are the precursor seeds of condensation nuclei and how do these particles evolve toward the micrometer sized grains that populate the interstellar medium? These are key questions of the NANOCOSMOS project. In this study, we carried out an observational study to constrain what the main gas-phase precursors of dust in C-rich AGB stars are.


2006 ◽  
Vol 5 (1) ◽  
pp. 37-45 ◽  
Author(s):  
Franco Cataldo

Monocyanopolyynes are formed by arcing graphite electrodes in ammonia. This work completes the parallelism existing between the polyynes formed by laser ablation experiments of graphite targets and those produced from the submerged electric arc. In both cases the same products are obtained. The products consist of hydrogen-terminated polyynes if water is present, monocyanopolyynes (mixed with hydrogen-terminated polyynes) if the carbon arc is sparked in acetonitrile or ammonia and dicyanopolyynes if the arc is struck in liquid nitrogen. The mechanism of formation of polyynes in the submerged carbon arc involves essentially neutral species; similar species and pathways may also occur in the circumstellar environment where polyynes have been detected by radioastronomy. It is shown that the relative abundances of the polyynes formed in the submerged carbon arc or in a carbon arc in vacuum decrease by a factor between three and five as the chain length increases by a C2 unit. Exactly the same trend has been observed by radioastronomy both for polyynes and cyanopolyynes in the circumstellar environment around red giants and asymptotic giant branch (AGB) stars. This fact may be a simple coincidence or may suggest that the mechanism of formation of the polyynes in the carbon arc is the same as that occurring in the surroundings of carbon-rich stars.


Universe ◽  
2021 ◽  
Vol 7 (7) ◽  
pp. 233
Author(s):  
Ambra Nanni ◽  
Sergio Cristallo ◽  
Jacco Th. van Loon ◽  
Martin A. T. Groenewegen

Background: Most of the stars in the Universe will end their evolution by losing their envelope during the thermally pulsing asymptotic giant branch (TP-AGB) phase, enriching the interstellar medium of galaxies with heavy elements, partially condensed into dust grains formed in their extended circumstellar envelopes. Among these stars, carbon-rich TP-AGB stars (C-stars) are particularly relevant for the chemical enrichment of galaxies. We here investigated the role of the metallicity in the dust formation process from a theoretical viewpoint. Methods: We coupled an up-to-date description of dust growth and dust-driven wind, which included the time-averaged effect of shocks, with FRUITY stellar evolutionary tracks. We compared our predictions with observations of C-stars in our Galaxy, in the Magellanic Clouds (LMC and SMC) and in the Galactic Halo, characterised by metallicity between solar and 1/10 of solar. Results: Our models explained the variation of the gas and dust content around C-stars derived from the IRS Spitzer spectra. The wind speed of the C-stars at varying metallicity was well reproduced by our description. We predicted the wind speed at metallicity down to 1/10 of solar in a wide range of mass-loss rates.


Sign in / Sign up

Export Citation Format

Share Document