scholarly journals Hydrodynamical simulations of protoplanetary disks including irradiation of stellar photons

2020 ◽  
Vol 644 ◽  
pp. A50
Author(s):  
Lizxandra Flores-Rivera ◽  
Mario Flock ◽  
Riouhei Nakatani

Context. In recent years hydrodynamical (HD) models have become important to describe the gas kinematics in protoplanetary disks, especially in combination with models of photoevaporation and/or magnetically driven winds. Our aim is to investigate how vertical shear instability (VSI) could influence the thermally driven winds on the surface of protoplanetary disks. Aims. In this first part of the project, we focus on diagnosing the conditions of the VSI at the highest numerical resolution ever recorded, and suggest at what resolution per scale height we obtain convergence. At the same time, we want to investigate the vertical extent of VSI activity. Finally, we determine the regions where extreme UV (EUV), far-UV (FUV), and X-ray photons are dominant in the disk. Methods. We perform global HD simulations using the PLUTO code. We adopt a global isothermal accretion disk setup, 2.5D (2 dimensions, 3 components) which covers a radial domain from 0.5 to 5.0 and an approximately full meridional extension. Our simulation runs cover a resolution from 12 to 203 cells per scale height. Results. We determine 50 cells per scale height to be the lower limit to resolve the VSI. For higher resolutions, ≥50 cells per scale height, we observe the convergence for the saturation level of the kinetic energy. We are also able to identify the growth of the “body” modes, with higher growth rate for higher resolution. Full energy saturation and a turbulent steady state is reached after 70 local orbits. We determine the location of the EUV heated region defined by Σr = 1019 cm−2 to be at HR ~ 9.7 and the FUV–X-ray heated boundary layer defined by Σr = 1022 cm−2 to be at HR ~ 6.2, making it necessary to introduce a hot atmosphere. For the first time we report the presence of small-scale vortices in the r − Z plane between the characteristic layers of large-scale vertical velocity motions. Such vortices could lead to dust concentration, promoting grain growth. Our results highlight the importance of combining photoevaporation processes in the future high-resolution studies of turbulence and accretion processes in disks.

2020 ◽  
Vol 635 ◽  
pp. A190 ◽  
Author(s):  
Urs Schäfer ◽  
Anders Johansen ◽  
Robi Banerjee

The streaming instability is a leading candidate mechanism to explain the formation of planetesimals. However, the role of this instability in the driving of turbulence in protoplanetary disks, given its fundamental nature as a linear hydrodynamical instability, has so far not been investigated in detail. We study the turbulence that is induced by the streaming instability as well as its interaction with the vertical shear instability. For this purpose, we employ the FLASH Code to conduct two-dimensional axisymmetric global disk simulations spanning radii from 1  to 100 au, including the mutual drag between gas and dust as well as the radial and vertical stellar gravity. If the streaming instability and the vertical shear instability start their growth at the same time, we find the turbulence in the dust midplane layer to be primarily driven by the streaming instability. The streaming instability gives rise to vertical gas motions with a Mach number of up to ~10−2. The dust scale height is set in a self-regulatory manner to about 1% of the gas scale height. In contrast, if the vertical shear instability is allowed to saturate before the dust is introduced into our simulations, then it continues to be the main source of the turbulence in the dust layer. The vertical shear instability induces turbulence with a Mach number of ~10−1 and thus impedes dust sedimentation. Nonetheless, we find the vertical shear instability and the streaming instability in combination to lead to radial dust concentration in long-lived accumulations that are significantly denser than those formed by the streaming instability alone. Therefore, the vertical shear instability may promote planetesimal formation by creating weak overdensities that act as seeds for the streaming instability.


Author(s):  
Clarence E. Choi ◽  
George Robert Goodwin

Steep-creek beds are macroscopically rough. This roughness causes channelised flow material to decelerate and dissipate energy, which are accounted for by depth-averaged mobility models (DMM). However, practical DMM implementations do not explicitly account for grain-scale basal interactions which influence macroscopic flow dynamics. In this study, we model flows using physical tests with smooth and macroscopically rough bases, and hence evaluate Discrete Element Method (DEM) and DMM models. A scaling effect is identified relating to roughened beds: increasing the number of grains per unit depth tends to suppress dispersion, such that small-scale flows on smooth beds resemble large-scale flows on roughened beds, at least in terms of bulk density. Furthermore, the DEM shows that rougher beds reduce the peak bulk density by up to 15% compared to a smooth bed. Rough beds increase the vertical momentum transfer tenfold, compared to smooth ones. The DMM cannot account for density change or vertical momentum, so DMM flow depths are underestimated by 90% at the flow front and 20% in the body. The Voellmy model implicitly captures internal energy dissipation for flows on rough beds. The parameter ξ can allow velocity reductions due to rough beds observed in the DEM to be captured.


2020 ◽  
Vol 499 (2) ◽  
pp. 1841-1853
Author(s):  
Natascha Manger ◽  
Hubert Klahr ◽  
Wilhelm Kley ◽  
Mario Flock

ABSTRACT Theoretical models of protoplanetary discs have shown the vertical shear instability (VSI) to be a prime candidate to explain turbulence in the dead zone of the disc. However, simulations of the VSI have yet to show consistent levels of key disc turbulence parameters like the stress-to-pressure ratio α. We aim to reconcile these different values by performing a parameter study on the VSI with focus on the disc density gradient p and aspect ratio h = H/R. We use full 2π 3D simulations of the disc for chosen set of both parameters. All simulations are evolved for 1000 reference orbits, at a resolution of 18 cells per h. We find that the saturated stress-to-pressure ratio in our simulations is dependent on the disc aspect ratio with a strong scaling of α∝h2.6, in contrast to the traditional α model, where viscosity scales as ν∝αh2 with a constant α. We also observe consistent formation of large scale vortices across all investigated parameters. The vortices show uniformly aspect ratios of χ ≈ 10 and radial widths of approximately 1.5H. With our findings we can reconcile the different values reported for the stress-to-pressure ratio from both isothermal and full radiation hydrodynamics models, and show long-term evolution effects of the VSI that could aide in the formation of planetesimals.


2014 ◽  
Vol 11 (S308) ◽  
pp. 368-371
Author(s):  
Jukka Nevalainen ◽  
L. J. Liivamägi ◽  
E. Tempel ◽  
E. Branchini ◽  
M. Roncarelli ◽  
...  

AbstractWe have developed a new method to approach the missing baryons problem. We assume that the missing baryons reside in a form of Warm Hot Intergalactic Medium, i.e. the WHIM. Our method consists of (a) detecting the coherent large scale structure in the spatial distribution of galaxies that traces the Cosmic Web and that in hydrodynamical simulations is associated to the WHIM, (b) mapping its luminosity into a galaxy luminosity density field, (c) using numerical simulations to relate the luminosity density to the density of the WHIM, (d) applying this relation to real data to trace the WHIM using the observed galaxy luminosities in the Sloan Digital Sky Survey and 2dF redshift surveys. In our application we find evidence for the WHIM along the line of sight to the Sculptor Wall, at redshifts consistent with the recently reported X-ray absorption line detections. Our indirect WHIM detection technique complements the standard method based on the detection of characteristic X-ray absorption lines, showing that the galaxy luminosity density is a reliable signpost for the WHIM. For this reason, our method could be applied to current galaxy surveys to optimise the observational strategies for detecting and studying the WHIM and its properties. Our estimates of the WHIM hydrogen column density NH in Sculptor agree with those obtained via the X-ray analysis. Due to the additional NH estimate, our method has potential for improving the constrains of the physical parameters of the WHIM as derived with X-ray absorption, and thus for improving the understanding of the missing baryons problem.


2018 ◽  
Vol 170 ◽  
pp. 08003
Author(s):  
L. Berge ◽  
N. Estre ◽  
D. Tisseur ◽  
E. Payan ◽  
D. Eck ◽  
...  

The future PLINIUS-2 platform of CEA Cadarache will be dedicated to the study of corium interactions in severe nuclear accidents, and will host innovative large-scale experiments. The Nuclear Measurement Laboratory of CEA Cadarache is in charge of real-time high-energy X-ray imaging set-ups, for the study of the corium-water and corium-sodium interaction, and of the corium stratification process. Imaging such large and high-density objects requires a 15 MeV linear electron accelerator coupled to a tungsten target creating a high-energy Bremsstrahlung X-ray flux, with corresponding dose rate about 100 Gy/min at 1 m. The signal is detected by phosphor screens coupled to high-framerate scientific CMOS cameras. The imaging set-up is established using an experimentally-validated home-made simulation software (MODHERATO). The code computes quantitative radiographic signals from the description of the source, object geometry and composition, detector, and geometrical configuration (magnification factor, etc.). It accounts for several noise sources (photonic and electronic noises, swank and readout noise), and for image blur due to the source spot-size and to the detector unsharpness. In a view to PLINIUS-2, the simulation has been improved to account for the scattered flux, which is expected to be significant. The paper presents the scattered flux calculation using the MCNP transport code, and its integration into the MODHERATO simulation. Then the validation of the improved simulation is presented, through confrontation to real measurement images taken on a small-scale equivalent set-up on the PLINIUS platform. Excellent agreement is achieved. This improved simulation is therefore being used to design the PLINIUS-2 imaging set-ups (source, detectors, cameras, etc.).


1994 ◽  
Vol 143 ◽  
pp. 159-171
Author(s):  
Ester Antonucci

The coronal features observed in X-ray emission, varying from the small-scale, short-lived bright points to the large-scale, long-lived coronal holes, are closely associated with the coronal magnetic field and its topology, and their variability depends strongly on the solar cycle. Here we discuss the spatial distribution of the coronal structures, the frequency distribution of the brightness variations in active regions, and the role of magnetic reconnection in determining the variability of the coronal features, on the basis of the new observations of the soft X-ray emission recently obtained with the Yohkoh satellite and the NIXT experiment.


2018 ◽  
Vol 14 (S345) ◽  
pp. 237-238
Author(s):  
Wilhelm Kley ◽  
Giovanni Picogna ◽  
Moritz H. R. Stoll

AbstractPlanets form in protoplanetary accretion discs around young protostars. These discs are driven by internal turbulence and the gas flow is not laminar but has stochastic components. For weakly ionised discs the turbulence can be generated purely hydrodynamically through the vertical shear instability (VSI). Embedded particles (dust/pebbles) experience a hydrodynamic drag and drift inward radially and are stirred up vertically by the turbulent motion of the disc. We study the accretion of particles onto a forming planet embedded in a VSI turbulent protoplanetary disc through a series of 3D hydrodynamical simulations for locally isothermal discs with embedded planets in the mass range from 5 to 100 Earth masses (M2295).


2015 ◽  
Vol 23 (2) ◽  
Author(s):  
A. Bartnik

AbstractIn this work a review of investigations concerning interaction of intense extreme ultraviolet (EUV) and soft X-ray (SXR) pulses with matter is presented. The investigations were performed using laser-produced plasma (LPP) EUV/SXR sources based on a double stream gas puff target. The sources are equipped with dedicated collectors allowing for efficient focusing of the EUV/SXR radiation pulses. Intense radiation in a wide spectral range, as well as a quasi-monochromatic radiation can be produced. In the paper different kinds of LPP EUV/SXR sources developed in the Institute of Optoelectronics, Military University of Technology are described.Radiation intensities delivered by the sources are sufficient for different kinds of interaction experiments including EUV/SXR induced ablation, surface treatment, EUV fluorescence or photoionized plasma creation. A brief review of the main results concerning this kind of experiments performed by author of the paper are presented. However, since the LPP sources cannot compete with large scale X-ray sources like synchrotrons, free electron lasers or high energy density plasma sources, it was indicated that some investigations not requiring extreme irradiation parameters can be performed using the small scale installations. Some results, especially concerning low temperature photoionized plasmas are very unique and could be hardly obtained using the large facilities.


Sign in / Sign up

Export Citation Format

Share Document