scholarly journals Insurance as a risk management system in green construction

2022 ◽  
Vol 42 ◽  
pp. 06003
Author(s):  
Kheda Murtazova ◽  
Salambek Aliyev

The study of the problems of the impact of climate change on economic development has become in recent years one of the main directions of economic research. At the same time, along with the development of a global macroeconomic policy in the field of climate and green building, more and more attention is paid to the analysis of corporate strategies to reduce risks and adapt to the consequences of climate change. Without large-scale business investments in green innovative technologies and the introduction of corporate standards for reducing greenhouse gas emissions, it is impossible to achieve long-term targets for reducing global climate risks.

Author(s):  
Irvin Alberto Mosquera ◽  
Luis Volnei Sudati Sagrilo ◽  
Paulo Maurício Videiro

Abstract This paper discusses the influence of the climate change in the long-term response of offshore structures. The case studied is a linear single-degree-of-freedom (SDOF) system under environmental load wave characterized by the JONSWAP spectrum. The wave parameter data used in the analyses were obtained from running the wind wave WaveWatch III with wind field input data derived from two Global Climate Models (GCMs): HadGEM2-ES and MRI-CGCM3 considering historical and future greenhouse emissions scenarios. The study was carried out for two locations: one in the North Atlantic and the other in Brazilian South East Coast. Environmental contours have been used to estimate the extreme long-term response. The results suggest that climate change would affect the structure response and its impact is highly depend on the structure location, the global climate model and the greenhouse emissions scenario selected.


2020 ◽  
Author(s):  
Paul Kim ◽  
Daniel Partridge ◽  
James Haywood

<p>Global climate model (GCM) ensembles still produce a significant spread of estimates for the future of climate change which hinders our ability to influence policymakers. The range of these estimates can only partly be explained by structural differences and varying choice of parameterisation schemes between GCMs. GCM representation of cloud and aerosol processes, more specifically aerosol microphysical properties, remain a key source of uncertainty contributing to the wide spread of climate change estimates. The radiative effect of aerosol is directly linked to the microphysical properties and these are in turn controlled by aerosol source and sink processes during transport as well as meteorological conditions.</p><p>A Lagrangian, trajectory-based GCM evaluation framework, using spatially and temporally collocated aerosol diagnostics, has been applied to over a dozen GCMs via the AeroCom initiative. This framework is designed to isolate the source and sink processes that occur during the aerosol life cycle in order to improve the understanding of the impact of these processes on the simulated aerosol burden. Measurement station observations linked to reanalysis trajectories are then used to evaluate each GCM with respect to a quasi-observational standard to assess GCM skill. The AeroCom trajectory experiment specifies strict guidelines for modelling groups; all simulations have wind fields nudged to ERA-Interim reanalysis and all simulations use emissions from the same inventories. This ensures that the discrepancies between GCM parameterisations are emphasised and differences due to large scale transport patterns, emissions and other external factors are minimised.</p><p>Preliminary results from the AeroCom trajectory experiment will be presented and discussed, some of which are summarised now. A comparison of GCM aerosol particle number size distributions against observations made by measurement stations in different environments will be shown, highlighting the difficulties that GCMs have at reproducing observed aerosol concentrations across all size ranges in pristine environments. The impact of precipitation during transport on aerosol microphysical properties in each GCM will be shown and the implications this has on resulting aerosol forcing estimates will be discussed. Results demonstrating the trajectory collocation framework will highlight its ability to give more accurate estimates of the key aerosol sources in GCMs and the importance of these sources in influencing modelled aerosol-cloud effects. In summary, it will be shown that this analysis approach enables us to better understand the drivers behind inter-model and model-observation discrepancies.</p>


2011 ◽  
Vol 1 (32) ◽  
pp. 61 ◽  
Author(s):  
Nicolas Chini ◽  
Peter Stansby ◽  
Mike Walkden ◽  
Jim Hall ◽  
Judith Wolf ◽  
...  

Assessment of nearshore response to climatic change is an important issue for coastal management. To predict potential effects of climate change, a framework of numerical models has been implemented which enables the downscaling of global projections to an eroding coastline, based on TOMAWAC for inshore wave propagation input into SCAPE for shoreline modelling. With this framework, components of which have already been calibrated and validated, a set of consistent global climate change projections is used to estimate the future evolution of an un-engineered coastline. The response of the shoreline is sensitive to the future scenarios, underlying the need for long term large scale offshore conditions to be included in the prediction of non-stationary processes.


2021 ◽  
Vol 6 (2) ◽  
pp. 79-83
Author(s):  
Lyudmila Levkovska ◽  
Alla Omelchenko

It is substantiated that the development of scientific and technological progress since the middle of the last century has led to intensive industrialization that, together with globalization processes, has resulted in global climate change. Nowadays, combating global warming is one of the most challenging and urgent tasks of humanity. Sweeping changes in natural systems, primarily an increase in the frequency and duration of droughts, floods, melting glaciers and rising water in the seven seas, biodiversity loss, etc., are the effect of global temperature rise. There is also a deterioration of living conditions and standards of the public, declining food security, especially in low- and middle-income countries. The research outlines the main trends in climate change. It is clarified the impact of climate change on the environment, man, society, and economy. The authors emphasize the significance and role of local actions towards adapting to the effects of climate change, which may become a tool for reducing climate risks in a global environment. It is justified that the challenge of climate change is addressed by joint efforts of each state of the world economic space. The effects of climate change and adaptation measures within economic realms are regarded by relying on global experience. The purpose of the article is to determine strategic guidelines for implementing adaptation measures to the impact of climate change to guarantee global environmental security. The research is based on a systems approach to solving the issue of guaranteeing global environmental security. In this context, it refers to the stimulation of constant economic modernization and the development of a new economic structure of the 21st century aimed at searching for effective mechanisms and tools promoting the measures for reducing greenhouse gas emissions. First of all, this means the implementation of energy-saving technologies, which will reduce the energy intensity of production and thus, increase economic energy efficiency and enhance global environmental security.


Significance COP22 has been dubbed "the COP of action, adaptation and Africa". It is a key opportunity to build confidence in the system of global cooperation adopted at the Paris Climate Conference. The Paris meeting ushered in a new framework for cooperation on climate change based on voluntary emissions reductions targets that will be jointly reviewed every five years. Negotiators gathering in Marrakech for COP22 face the task of making the Paris Agreement work -- and delivering results on a sufficiently large scale. Impacts Cooperation under the Paris framework will help reduce climate change effects, though overshooting of the 2 degree target is inevitable. The Paris deal's reliance on peer pressure and self-policing will risk national-level backsliding during the implementation process. Actions taken in the next ten years will determine the impact of climate change on global growth prospects for the whole of this century.


2019 ◽  
Vol 76 (6) ◽  
pp. 1524-1542
Author(s):  
Melissa A Haltuch ◽  
Z Teresa A’mar ◽  
Nicholas A Bond ◽  
Juan L Valero

Abstract US West Coast sablefish are economically valuable, with landings of 11.8 million pounds valued at over $31 million during 2016, making assessing and understanding the impact of climate change on the California Current (CC) stock a priority for (1) forecasting future stock productivity, and (2) testing the robustness of management strategies to climate impacts. Sablefish recruitment is related to large-scale climate forcing indexed by regionally correlated sea level (SL) and zooplankton communities that pelagic young-of-the-year sablefish feed upon. This study forecasts trends in future sablefish productivity using SL from Global Climate Models (GCMs) and explores the robustness of harvest control rules (HCRs) to climate driven changes in recruitment using management strategy evaluation (MSE). Future sablefish recruitment is likely to be similar to historical recruitment but may be less variable. Most GCMs suggest that decadal SL trends result in recruitments persisting at lower levels through about 2040 followed by higher levels that are more favorable for sablefish recruitment through 2060. Although this MSE suggests that spawning biomass and catches will decline, and then stabilize, into the future under both HCRs, the sablefish stock does not fall below the stock size that leads to fishery closures.


2020 ◽  
Author(s):  
Seaver Wang ◽  
Zeke Hausfather

Abstract. Increasing attention is focusing upon climate tipping elements – large-scale earth systems anticipated to respond through positive feedbacks to anthropogenic climate change by shifting towards new long-term states. In some but not all cases, such changes could produce additional greenhouse gas emissions or radiative forcing that could compound global warming. Developing greater understanding of tipping elements is important for predicting future climate risks. Here we review mechanisms, predictions, impacts, and knowledge gaps associated with ten notable climate tipping elements. We also evaluate which tipping elements are more imminent and whether shifts will likely manifest rapidly or over longer timescales. Some tipping elements are significant to future global climate and will likely affect major ecosystems, climate patterns, and/or carbon cycling within the current century. However, assessments under different emissions scenarios indicate a strong potential to reduce or avoid impacts associated with many tipping elements through climate change mitigation. Most tipping elements do not possess the potential for abrupt future change within years, and some tipping elements are perhaps more accurately termed climate feedbacks. Nevertheless, significant uncertainties remain associated with many tipping elements, highlighting an acute need for further research and modeling to better constrain risks.


2005 ◽  
Vol 272 (1581) ◽  
pp. 2561-2569 ◽  
Author(s):  
Marcel E Visser ◽  
Christiaan Both

Climate change has led to shifts in phenology in many species distributed widely across taxonomic groups. It is, however, unclear how we should interpret these shifts without some sort of a yardstick: a measure that will reflect how much a species should be shifting to match the change in its environment caused by climate change. Here, we assume that the shift in the phenology of a species' food abundance is, by a first approximation, an appropriate yardstick. We review the few examples that are available, ranging from birds to marine plankton. In almost all of these examples, the phenology of the focal species shifts either too little (five out of 11) or too much (three out of 11) compared to the yardstick. Thus, many species are becoming mistimed due to climate change. We urge researchers with long-term datasets on phenology to link their data with those that may serve as a yardstick, because documentation of the incidence of climate change-induced mistiming is crucial in assessing the impact of global climate change on the natural world.


2020 ◽  
Author(s):  
Simona Castaldi ◽  
Serena Antonucci ◽  
Shahla Asgharina ◽  
Giovanna Battipaglia ◽  
Luca Belelli Marchesini ◽  
...  

<p>The  <strong>Italian TREETALKER NETWORK (ITT-Net) </strong>aims to respond to one of the grand societal challenges: the impact of climate changes on forests ecosystem services and forest dieback. The comprehension of the link between these phenomena requires to complement the most classical approaches with a new monitoring paradigm based on large scale, single tree, high frequency and long-term monitoring tree physiology, which, at present, is limited by the still elevated costs of multi-sensor devices, their energy demand and maintenance not always suitable for monitoring in remote areas. The ITT-Net network will be a unique and unprecedented worldwide example of real time, large scale, high frequency and long-term monitoring of tree physiological parameters. By spring 2020, as part of a national funded project (PRIN) the network will have set 37 sites from the north-east Alps to Sicily where a new low cost, multisensor technology “the TreeTalker®” equipped to measure tree radial growth, sap flow, transmitted light spectral components related to foliage dieback and physiology and plant stability (developed by Nature 4.0), will monitor over 600 individual trees. A radio LoRa protocol for data transmission and access to cloud services will allow to transmit in real time high frequency data on the WEB cloud with a unique IoT identifier to a common database where big data analysis will be performed to explore the causal dependency of climate events and environmental disturbances with tree functionality and resilience.</p><p>With this new network, we aim to create a new knowledge, introducing a massive data observation and analysis, about the frequency, intensity and dynamical patterns of climate anomalies perturbation on plant physiological response dynamics in order to: 1) characterize the space of “normal or safe tree operation mode” during average climatic conditions; 2) identify the non-linear tree responses beyond the safe operation mode, induced by extreme events, and the tipping points; 3) test the possibility to use a high frequency continuous monitoring system to identify early warning signals of tree stress which might allow to follow tree dynamics under climate change in real time at a resolution and accuracy that cannot always be provided through forest inventories or remote sensing technologies.</p><p>To have an overview of the ITT Network you can visit www.globaltreetalker.org</p><p> </p>


Atmosphere ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1390
Author(s):  
Zhaosheng Wang

Remote sensing vegetation index data contain important information about the effects of ozone pollution, climate change and other factors on vegetation growth. However, the absence of long-term observational data on surface ozone pollution and neglected air pollution-induced effects on vegetation growth have made it difficult to conduct in-depth studies on the long-term, large-scale ozone pollution effects on vegetation health. In this study, a multiple linear regression model was developed, based on normalized difference vegetation index (NDVI) data, ozone mass mixing ratio (OMR) data at 1000 hPa, and temperature (T), precipitation (P) and surface net radiation (SSR) data during 1982–2020 to quantitatively assess the impact of ozone pollution and climate change on vegetation growth in China on growing season. The OMR data showed an increasing trend in 99.9% of regions in China over the last 39 years, and both NDVI values showed increasing trends on a spatial basis with different ozone pollution levels. Additionally, the significant correlations between NDVI and OMR, temperature and SSR indicate that vegetation activity is closely related to ozone pollution and climate change. Ozone pollution affected 12.5% of NDVI, and climate change affected 26.7% of NDVI. Furthermore, the effects from ozone pollution and climate change on forest, shrub, grass and crop vegetation were evaluated. Notably, the impact of ozone pollution on vegetation growth was 0.47 times that of climate change, indicating that the impact of ozone pollution on vegetation growth cannot be ignored. This study not only deepens the understanding of the effects of ozone pollution and climate change on vegetation growth but also provides a research framework for the large-scale monitoring of air pollution on vegetation health using remote sensing vegetation data.


Sign in / Sign up

Export Citation Format

Share Document