scholarly journals Problems of mineral raw material losses of quality and quantity management in developing of large-scale complex-structure deposits.

2018 ◽  
Vol 56 ◽  
pp. 04003
Author(s):  
Sergei Tkach

The article deals with the problems of mineral raw material losses of quality and quantity management in developing of large-scale complex-structure and composition deposits of solid minerals. It is shown that a very high degree of mining and geological conditions variability in time and space for the development of mining units is typical for such deposits. This significantly complicates the qualitative and quantitative operating losses setting and accounting of mineral raw materials during its extraction in the framework of existing general and industry regulatory documents. Conceptual principles for face-by-face operational setting of losses and impoverishment of minerals for the conditions of bulk mining of complex-structure deposits with the formation of gross mining flow with economically feasible and specified level of quality (the content of commercial and harmful components) are stated. These principles generally do not contradict effective instructions main provisions and are made to minimize the total operating losses during the processing of several mine sections (faces).

2018 ◽  
Vol 7 (2) ◽  
Author(s):  
Firman L. Sahwan

Organic materials that are generally used as raw material for organic fertilizer granules (POG) is a natural organic material that has been degrade, smooth and dry. One of the main raw materials are always used with a very high percentage of usage, is manure. Manure potential in Indonesia is very high, amounting to 113.6 million tons per year, or 64.7 million tons per year to the island of Java. From this amount, it will be generated numbers POG production potential of 17.5 million tons per year (total Indonesia) or 9.9 million tons per year for the island of Java. While the realistic POG production predictions figures made from raw manure is 2.5 million tons annually, a figure that has been unable to meet the number requirement of POG greater than 4 million tons per year. Therefore, in producing POG, it should be to maximize the using of the potential of other organic materials so that the use of manure can be saved. With the use of a small amount of manure (maximum 30% for cow manure), it would be useful also to avoid the production of POG with high Fe content.keywods: organic material, manure, granule organic fertilizer


Author(s):  
Katerina I. Panova ◽  
◽  
Nicolay N. Pravdin ◽  
Аnatoliy О. Kiryanov ◽  
◽  
...  

In the process of decomposition of phosphate raw materials, the dynamics of transformation of its constituent mineral phosphoric components: fluorapatite and its derivatives into available for plants dihydro - and hydroorthophosphates of calcium and the influence of a natural organic activator on it are studied.. The composition of the obtained organomineral products was evaluated. The questions of intensification of processing of phosphorite in phosphate-peat systems with additional involvement of nitric acid are considered. The possibilities of reducing the amount of acidic reagents to 50% are shown, while guaranteeing a high degree of use of the target raw material component (94%) and the absence of waste.


2021 ◽  
Vol 5 (1) ◽  
pp. 37
Author(s):  
Konstantinos Oikonomou ◽  
Dimitris Damigos

Mineral raw materials prices have been shown to be affected by macroeconomic factors such as aggregate demand and commodity-specific factors (e.g., supply shocks). In addition, it has been shown that certain mineral raw material prices co-move, meaning that they behave similarly during expansion and contraction phases of the international business cycles. In order to assess the behavior similarity of the prices of different mineral raw materials, we propose a method that utilizes extracted features of time series price data and unsupervised learning techniques to create clusters of price movements having similar long-term behavior.


Author(s):  
Asep Bayu Dani Nandiyanto ◽  
Nissa Nur Azizah ◽  
Gabriela Chelvina Santiuly Girsang

Corncob is usually disposed of directly as waste, creating problems in the environment, while it can be converted into valuable materials. This research aimed to evaluate the literature review on briquette production from agricultural waste (using non-binder and cold press with a binder) and the current works on techno-economic analysis, to propose an optimal design for the production of briquette from corncob waste, and to perform a techno-economic analysis based on the selected optimal processing method. The engineering perspective based on stoichiometry and mass balance showed the potential corncob briquette manufacture in both home and large scales due to the possible use of inexpensive and commercially available equipment and raw materials. The economic perspective [based on several economic evaluation factors (i.e., gross profit margin, payback period, break-even point, cumulative net present value, return of investment, internal rate return, and profitability index) under ideal and non-ideal conditions by considering internal (i.e., sales, raw materials, utilities, and variable cost) and external aspects (i.e., tax)] confirmed the prospective development of the project in the large-scale production with a lifetime of more than 18 years. The main issue in the project is the raw material (i.e. tapioca flour), giving the most impact on the project’s feasibility. Even in severe conditions, the project is feasible. The great endurance was also confirmed in the case of a higher tax rate. This study demonstrates the importance of producing corncob-based briquettes for improving the economic value and giving alternatives for problem solvers in the utilization of agricultural waste.


Minerals ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 174 ◽  
Author(s):  
Peter Blistan ◽  
Stanislav Jacko ◽  
Ľudovít Kovanič ◽  
Julián Kondela ◽  
Katarína Pukanská ◽  
...  

A frequently recurring problem in the extraction of mineral resources (especially heterogeneous mineral resources) is the rapid operative determination of the extracted quantity of raw material in a surface quarry. This paper deals with testing and analyzing the possibility of using unconventional methods such as digital close-range photogrammetry and terrestrial laser scanning in the process of determining the bulk density of raw material under in situ conditions. A model example of a heterogeneous deposit is the perlite deposit Lehôtka pod Brehmi (Slovakia). Classical laboratory methods for determining bulk density were used to verify the results of the in situ method of bulk density determination. Two large-scale samples (probes) with an approximate volume of 7 m3 and 9 m3 were realized in situ. 6 point samples (LITH) were taken for laboratory determination. By terrestrial laser scanning (TLS) measurement from 2 scanning stations, point clouds with approximately 163,000/143,000 points were obtained for each probe. For Structure-from-Motion (SfM) photogrammetry, 49/55 images were acquired for both probes, with final point clouds containing approximately 155,000/141,000 points. Subsequently, the bulk densities of the bulk samples were determined by the calculation from in situ measurements by TLS and SfM photogrammetry. Comparison of results of the field in situ measurements (1841 kg∙m−3) and laboratory measurements (1756 kg∙m−3) showed only a 4.5% difference in results between the two methods for determining the density of heterogeneous raw materials, confirming the accuracy of the used in situ methods. For the determination of the loosening coefficient, the material from both large-scale samples was transferred on a horizontal surface. Their volumes were determined by TLS. The loosening coefficient for the raw material of 1.38 was calculated from the resulting values.


2014 ◽  
Vol 541-542 ◽  
pp. 397-403
Author(s):  
Zhang Nan Lin ◽  
Hong Juan Liu ◽  
Zhi Qin Wang ◽  
Jia Nan Zhang

Microbial oil is one of the ideal raw materials for biodiesel production because of its rapid reproduction and less influence by the climate and season variation. However, the high cost is one of the key issues that restricted its production in a large-scale. Lignocellulosic biomass, the cheap and renewable resource, might be the best raw material for microbial oil production by oleaginous microorganisms. Recent development on the microbial oil production from lignocellulosic biomass was summarized in this paper. Furthermore, the challenges and application potential of microbial oil were prospected.


Author(s):  
M. Kurylo ◽  
V. Bala

The purpose of this study is to analyze and systematize criteria by which, in domestic and international practice, the industrial value of coal deposits with small and insignificant reserves is determined. The analysis and systematization of such factors in general for all coal deposits with the definite definition of the most influential characteristics for small stocks are carried out. Mining and geological factors, which are caused by natural characteristics of the deposit and directly related to the concrete object, are determined, and there have been singled out factors concerning the minerals in general or characterizing the external conditions of industrial development of deposits. For coal deposits with insignificant reserves, the criteria that directly affect the most critical parameter - the value of coal reserves and, consequently, the lifetime of the mining enterprise have paramount importance. Such criteria are the quality of coal, which defines the direction of use and its liquidity, the degree of geological study, which expresses the geological risks of reserves confirmation, and the complexity of mining technical conditions that define methods and systems for the reserves disclosure and development. In general, external factors for coal deposits are most affected by the availability of raw material substitutes and market conditions, and coal prices. For deposits with insignificant reserves, prices and possibility of mining, which involves availability of licenses and social permits, may have a greater impact. Industrial significance of deposit with insignificant reserves may appear favorable of all other conditions of development - mining and technical conditions that form low cost of production, coal quality, favorable market conditions for mineral raw materials, localization of the deposit near consumers, etc. At the same time, the main prerequisite for attracting objects with insignificant reserves to exploitation should be their high degree of geological study. Decision about possible industrial significance should be taken after detailed technical and economic calculations.


2021 ◽  
Vol 5 (1) ◽  
pp. 1
Author(s):  
Angela v. Beckh Bacchetta ◽  
Volker Krümpel ◽  
Ella Cullen

By combining blockchain with physical tracking technologies, raw materials can potentially be traced throughout their global supply chains. Physical tracking technologies enable observing how raw materials move within the physical world, whereas blockchain translates these events into the digital world with an immutable record. This paper presents a taxonomy of different physical tracking technologies and examines if and how the combination of these technologies render raw material supply chains more transparent. Although academic literature highlights the theoretical benefits of combining these transformative technologies, large scale projects are still in their early stages. Following a brief literature review, this paper leverages an empirical approach to classify different tracking technologies, their fields of application and limitations, as well as how these technologies can enable supply chain transparency. Obviously, there is no single technology that can fulfil all requirements along complex supply chains. However, the relevant combination of respective technologies can help bridge gaps by increasing transparency within supply chains.


Author(s):  
Jakob Kløve Keiding ◽  
Per Kalvig ◽  
Claus Ditlefsen ◽  
Steen Lomholt ◽  
Peter Roll Jakobsen

Aggregates and other mineral raw materials are important prerequisites for the continual development of the infrastructure and economic growth of a country. Th e production of these raw materials in Denmark amounted to c. 4.5 m3 per capita in 2012, which was 57% higher than the average in EU and EFTA countries (UEPG 2014). In this perspective, it is essential to locate and assess the Danish mineral resources in order to plan future exploitation, especially in densely populated regions where both spatial competition for landuse and demands for raw materials are high. Here we present the methods used in a recent resource evaluation that for the fi rst time includes Danish resources both on land and at sea and summarises some of the main fi ndings of this analysis.


2021 ◽  
Vol 75 (9) ◽  
pp. 752-756
Author(s):  
Jakob J. Mueller ◽  
Hans H. Wenk

Biosurfactants are surface-active molecules, developed by nature through evolution and naturally produced by different microorganisms. The most prominent examples are rhamnolipids and sophorolipids, molecules which contain hydrophilic sugar head groups and hydrophobic alkyl residues leading to an amphiphilic behavior with unique properties. Recent developments in the field of biotechnology enable the large-scale production of these biological molecules. The raw material basis is 100% renewable since sugars and oils are used as major raw materials. Additionally, biosurfactants are fully biodegradable, which allows the path back into the natural cycles. In comparison to established standard surfactants like SLES/SLS (sodium laureth (ether) sulfates) or betaines, rhamnolipids are much milder and, at the same time, show similar or even better performance in household or personal care applications. Foam behavior, solubilization and cleaning effectiveness are examples where these natural substances give excellent results compared to the synthetic benchmarks. The commercialization of biosurfactants at industrial scale now offers alternatives to consumers seeking sustainable solutions, without compromising performance. Biosurfactants combine both and set a new standard for surfactant applications.


Sign in / Sign up

Export Citation Format

Share Document