scholarly journals New green roof and green wall systems for implementation in the coverings

2019 ◽  
Vol 97 ◽  
pp. 06023 ◽  
Author(s):  
Elena Korol ◽  
Natalia Shushunova ◽  
Stepan Rerikh

In this article, the approaches to the application of evaluation systems for green buildings to the processes of modeling and designing green infrastructure in the development of the management mechanism of the urban environment, the problems of using green roof technologies are reviewed. The implementation of new green roof and green wall systems requires the accumulation of parametric data for variability in the selection of rational decisions. This study presents new green roof and green wall technologies and describes the main device advantages compared to existing coverings. The study applied the methods of comparative analysis of various options for roofing systems, including landscaping, based on the principles of labor and time savings. The comparison is made of the various indicators of the labor intensity of the covering device, using methods of structural-functional modeling. On the graphical models the identification of the structural separate layers of the roof structure is shown, which clearly represents the variable model according to various indicators of labor intensity. This research presents the new green roof and green wall technologies for implementation in the coverings and describes the main device advantages compared to existing coverings, which designed for simple cost-effective installation and modern urban design flexibility.

2021 ◽  
Vol 13 (8) ◽  
pp. 4278
Author(s):  
Svetlana Tam ◽  
Jenna Wong

Sustainability addresses the need to reduce the structure’s impact on the environment but does not reduce the environment’s impact on the structure. To explore this relationship, this study focuses on quantifying the impact of green roofs or vegetated roofs on seismic responses such as story displacements, interstory drifts, and floor level accelerations. Using an archetype three-story steel moment frame, nonlinear time history analyses are conducted in OpenSees for a shallow and deep green roof using a suite of ground motions from various distances from the fault to identify key trends and sensitivities in response.


2021 ◽  
Vol 13 (4) ◽  
pp. 2293
Author(s):  
Seda Ertan ◽  
Rahmi Nurhan Çelik

Rapid and uncontrolled changes in land use patterns due to urbanization negatively affect urban rainfall-runoff processes and flood hazard. In this study, a method that included different sustainable drainage solutions, such as green infrastructure (GI) usage for flood hazard mitigation with various scenarios on a geographic information system (GIS) platform within a 1653 ha catchment of the Kağıthane Stream in İstanbul, Turkey is presented. Developed scenarios are as follows: scenario one (SN1) is the current situation; scenario two (SN2) used green roof application for buildings and a permeable surface for roads; scenario three (SN3) used only green roof application for buildings; scenario four (SN4) used a rainwater barrel for collecting roof water, a swale canal for collecting road water, and added additional structures to open areas to observe urbanization; scenario five (SN5) considered multiple GI implementations; and scenario six (SN6) considered full urbanization. The results indicate that greener infrastructure implementation provides benefits in reducing both the runoff coefficient and the peak flowrate, and the flood inundation area and number of structures affected by flood risk were decreased. The integrated evaluation system, which consisted of the geographic information system and the assessment of the 1D HEC-RAS hydrologic model, was applied to evaluate the GI usage and flood mitigation.


Author(s):  
Bilim Atli-Veltin

In the small scale LNG infrastructure, composite materials are scarcely employed. Potentially, cost effective solutions for LNG applications could be developed thanks to the advantages of composite materials over metals such as weight savings, design flexibility and recyclability. The research presented in this paper focuses on the mechanical performance of fully recyclable, thermoplastic Polypropylene (PP) composite tapes at cryogenic LNG temperatures. Quasi-static tensile tests performed on [±45] laminates made of plain woven plies of PURE® show that at −196°C the behavior is bilinear with the failure strain of 6.5% and failure stress of 37 MPa. Such non-brittle failure behavior of PP is desirable for cryogenic applications. The other results presented in the paper contains [0/90] laminate results and the interlaminar shear strength characteristics at room and cryogenic temperatures.


2019 ◽  
Vol 28 (4) ◽  
pp. 632-640
Author(s):  
Anna Baryła ◽  
Agnieszka Bus ◽  
Agnieszka Karczmarczyk ◽  
Joanna Witkowska-Dobrev

Increasing urban populations raises a number of problems and risks that are strengthened by observed and projected climate change. An increase in green areas (so-called green infrastructure) has turned out to be an effective means of lowering temperature in the city. Green roofs can be one of the possible measures leading to achieving this aim. The aim of the study was the analysis of temperature changes of different roof surfaces (conventional roof, board, intensive roof substrate without plant cover, substrate covered with plants (shrubs). Studies on comparing the temperature between a conventional roof and green roofs were carried out in the period from April to September 2015 on the roof of the building of the Faculty of Modern Languages, University of Warsaw. The measurement was performed using the FLIR SC620 thermal imaging system. As a result of the tests, it was found that in the summer months the differences between the temperature of the green roof and the conventional roof amounted to a maximum of 31.3°C. The obtained results showed that the roof with vegetation can signifi cantly contribute to the mitigation of the urban heat island phenomenon in urban areas during summer periods.


2019 ◽  
Vol 28 (4) ◽  
pp. 641-652 ◽  
Author(s):  
Ewa Burszta-Adamiak ◽  
Wiesław Fiałkiewicz

Nowadays green roofs play a key role in alleviating the negative effects of urbanization. Despite investors awareness of the advantages of green roofs, there are still some barriers that hinder investments on a large scale. As a result a financial and non-financial incentives are implemented. The review presented in this paper allowed to identify the most popular initiatives and to formulate recommendations for creating incentive supporting implementation of green roofs in urban areas.


2013 ◽  
Vol 2013 (DPC) ◽  
pp. 000377-000397
Author(s):  
Jon G. Aday ◽  
Ted Tessier ◽  
Kazuhisa Itoi ◽  
Satoshi Okude

Embedded die substrate technologies are being developed in an assortment of configurations and for different market segments. The technology being discussed in this paper will be focused on both a fan out technology – ChipsetT Fan-Out and a system in package approach (ChipsetT SiP) in which a multiple component bill of materials (BOM) is used. The Chipset process is based on the WABE (Wafer and Board Level Embedding) technology. WABE technology is based on co-lamination of multilayer polyimide flex wiring and conductive z-axis sintered metal interconnections. This ChipsetT Fan Out technology allows for large scale production of fan out type solutions which can allow for very thin packages in addition to unique pin out solutions such as pin compatibility for a competitor part. The ChipsetT SiP also allows embedding of single or multiple silicon die and/or components. Additional components can also be placed using conventional SMT on the top or bottom side of the package. There is a great deal of design flexibility with this technology which makes it a great solution for applications trying to reduce their x-y size or z-height. When utilizing RDL technology on the embedded die we are able to do the fine pitch routing in order to allow the substrate to route at larger pitches ensuring an overall cost effective solution. This paper will focus on the different classes of applications that have benefited from this technology and will discuss the benefits and tradeoffs of the different solutions that have been engineered. Assembly and reliability data will be presented on several of the applications showing a robust solution set.


2021 ◽  
Vol 135 ◽  
pp. 110111 ◽  
Author(s):  
Maria Manso ◽  
Inês Teotónio ◽  
Cristina Matos Silva ◽  
Carlos Oliveira Cruz

Water ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 1368 ◽  
Author(s):  
Monica Moroni ◽  
Michele Porti ◽  
Patrizia Piro

The combination of an appropriate design and careful management of green infrastructures may contribute to mitigate flooding (stormwater quantity) and pollutant discharges (stormwater quality) into receiving water bodies and to coping with other extreme climate impacts (such as temperature regime) on a long-term basis and water cycle variability. The vegetation health state ensures the green infrastructure’s effectiveness. Due to their remarkable spatial and spectral resolution, hyperspectral sensing devices appear to be the most suited for green infrastructure vegetation monitoring according to the peculiar spectral features that vegetation exhibits. In particular, vegetation health-state detection is feasible due to the modifications the typical vegetation spectral signature undergoes when abnormalities are present. This paper presents a ground spectroscopy monitoring survey of the green roof installed at the University of Calabria fulfilled via the acquisition and analysis of hyperspectral data. The spectroradiometer, placed on a fixed stand, was used to identify stress conditions of vegetation located in areas where drought could affect the plant health state. Broadband vegetation indices were employed for this purpose. For the test case presented, data acquired agreed well with direct observations on the ground. The analyses carried out showed the remarkable performances of the broadband indices Red Difference Vegetation Index (Red DVI), Simple Ratio (SR) and Triangular Vegetation Index (TVI) in highlighting the vegetation health state and encouraged the design of a remote-controlled platform for monitoring purposes.


2014 ◽  
Vol 2014 (18) ◽  
pp. 120-133
Author(s):  
Carol L. Hufnagel ◽  
Scott D. Struck ◽  
James Theiler

Sign in / Sign up

Export Citation Format

Share Document