scholarly journals The thermal inertia time constants and its influencing factors in the thermal dynamic process of overhead line and cable

2020 ◽  
Vol 185 ◽  
pp. 01080
Author(s):  
Qiying Li ◽  
Yan Zhang ◽  
Xin Liu ◽  
Kunming Hou ◽  
Shengyuan Zhou ◽  
...  

Due to the existence of thermal capacity, the conductor temperature of overhead line and cable changes later than current steps (thermal inertia), and the thermal dynamic process of the conductor contains the huge current-carrying potential. As an important symbol of thermal dynamic process, the thermal inertia time constant is of great significance to describe the characteristics of thermal dynamic process accurately. In this paper, the thermal inertia time constants of overhead line and cable and its influencing factors are studied based on the heat balance models, which can be solved by the fourth order Runge-Kutta method. Then the four factors including the current step, ambient temperature, wind speed and global radiation intensity are used to explore their influence on the thermal inertia time constant of overhead line, and the current step and soil temperature on cable. The numerical results show the effects of influencing factors on the thermal inertia time constant and provide a theoretical basis for a more detailed evaluation of the thermal dynamic process.

Author(s):  
Tugrul Irmak ◽  
Ksander N. de Winkel ◽  
Daan M. Pool ◽  
Heinrich H. Bülthoff ◽  
Riender Happee

AbstractPrevious literature suggests a relationship between individual characteristics of motion perception and the peak frequency of motion sickness sensitivity. Here, we used well-established paradigms to relate motion perception and motion sickness on an individual level. We recruited 23 participants to complete a two-part experiment. In the first part, we determined individual velocity storage time constants from perceived rotation in response to Earth Vertical Axis Rotation (EVAR) and subjective vertical time constants from perceived tilt in response to centrifugation. The cross-over frequency for resolution of the gravito-inertial ambiguity was derived from our data using the Multi Sensory Observer Model (MSOM). In the second part of the experiment, we determined individual motion sickness frequency responses. Participants were exposed to 30-minute sinusoidal fore-aft motions at frequencies of 0.15, 0.2, 0.3, 0.4 and 0.5 Hz, with a peak amplitude of 2 m/s2 in five separate sessions, approximately 1 week apart. Sickness responses were recorded using both the MIsery SCale (MISC) with 30 s intervals, and the Motion Sickness Assessment Questionnaire (MSAQ) at the end of the motion exposure. The average velocity storage and subjective vertical time constants were 17.2 s (STD = 6.8 s) and 9.2 s (STD = 7.17 s). The average cross-over frequency was 0.21 Hz (STD = 0.10 Hz). At the group level, there was no significant effect of frequency on motion sickness. However, considerable individual variability was observed in frequency sensitivities, with some participants being particularly sensitive to the lowest frequencies, whereas others were most sensitive to intermediate or higher frequencies. The frequency of peak sensitivity did not correlate with the velocity storage time constant (r = 0.32, p = 0.26) or the subjective vertical time constant (r = − 0.37, p = 0.29). Our prediction of a significant correlation between cross-over frequency and frequency sensitivity was not confirmed (r = 0.26, p = 0.44). However, we did observe a strong positive correlation between the subjective vertical time constant and general motion sickness sensitivity (r = 0.74, p = 0.0006). We conclude that frequency sensitivity is best considered a property unique to the individual. This has important consequences for existing models of motion sickness, which were fitted to group averaged sensitivities. The correlation between the subjective vertical time constant and motion sickness sensitivity supports the importance of verticality perception during exposure to translational sickness stimuli.


2021 ◽  
Author(s):  
Alain de Cheveigné

This paper suggests an explanation for listener’s greater tolerance to positive than negative mistuning of the higher tone within an octave pair. It hypothesizes a neu- ral circuit tuned to cancel the lower tone, that also cancels the higher tone if that tone is in tune. Imperfect cancellation is the cue to mistuning of the octave. The circuit involves two pathways, one delayed with respect to the other, that feed a coincidence-counting neuron via excitatory and inhibitory synapses. A mismatch between the time constants of these two synapses results in an asymmetry in sen- sitivity to mismatch. Specifically, if the time constant of the delayed pathway is greater than that of the direct pathway, there is a greater tolerance to positive than to negative mistuning, which can lead to a perceptual“stretch” of the octave. The model is applicable to both harmonic and – with qualification – melodic oc- taves. The paper describes the model and reviews the evidence from auditory psychophysics and physiology in favor – or against – it.


1993 ◽  
Vol 102 (2) ◽  
pp. 217-237 ◽  
Author(s):  
B Mlinar ◽  
B A Biagi ◽  
J J Enyeart

The whole cell version of the patch clamp technique was used to identify and characterize voltage-gated Ca2+ channels in enzymatically dissociated bovine adrenal zona fasciculata (AZF) cells. The great majority of cells (84 of 86) expressed only low voltage-activated, rapidly inactivating Ca2+ current with properties of T-type Ca2+ current described in other cells. Voltage-dependent activation of this current was fit by a Boltzmann function raised to an integer power of 4 with a midpoint at -17 mV. Independent estimates of the single channel gating charge obtained from the activation curve and using the "limiting logarithmic potential sensitivity" were 8.1 and 6.8 elementary charges, respectively. Inactivation was a steep function of voltage with a v1/2 of -49.9 mV and a slope factor K of 3.73 mV. The expression of a single Ca2+ channel subtype by AZF cells allowed the voltage-dependent gating and kinetic properties of T current to be studied over a wide range of potentials. Analysis of the gating kinetics of this Ca2+ current indicate that T channel activation, inactivation, deactivation (closing), and reactivation (recovery from inactivation) each include voltage-independent transitions that become rate limiting at extreme voltages. Ca2+ current activated with voltage-dependent sigmoidal kinetics that were described by an m4 model. The activation time constant varied exponentially at test potentials between -30 and +10 mV, approaching a voltage-independent minimum of 1.6 ms. The inactivation time constant (tau i) also decreased exponentially to a minimum of 18.3 ms at potentials positive to 0 mV. T channel closing (deactivation) was faster at more negative voltages; the deactivation time constant (tau d) decreased from 8.14 +/- 0.7 to 0.48 +/- 0.1 ms at potentials between -40 and -150 mV. T channels inactivated by depolarization returned to the closed state along pathways that included two voltage-dependent time constants. tau rec-s ranged from 8.11 to 4.80 s when the recovery potential was varied from -50 to -90 mV, while tau rec-f decreased from 1.01 to 0.372 s. At potentials negative to -70 mV, both time constants approached minimum values. The low voltage-activated Ca2+ current in AZF cells was blocked by the T channel selective antagonist Ni2+ with an IC50 of 20 microM. At similar concentrations, Ni2+ also blocked cortisol secretion stimulated by adrenocorticotropic hormone. Our results indicate that bovine AZF cells are distinctive among secretory cells in expressing primarily or exclusively T-type Ca2+ channels.(ABSTRACT TRUNCATED AT 400 WORDS)


Author(s):  
Kenneth Kar ◽  
Akshya K. Swain ◽  
Robert Raine

The present study addresses the problem of estimating time-varying time constants associated with thermocouple sensors by a set of basis functions. By expanding each time-varying time constant onto a finite set of basis sequences, the time-varying identification problem reduces to a parameter estimation problem of a time-invariant system. The proposed algorithm, to be called as orthogonal least-squares with basis function expansion algorithm, combines the orthogonal least-squares algorithm with an error reduction ratio test to include significant basis functions into the model, which results in a parsimonious model structure. The performance of the method was compared with a linear Kalman filter. Simulations on engine data have demonstrated that the proposed method performs satisfactorily and is better than the Kalman filter. The new technique has been applied in a Stirling cycle compressor. The sinusoidal variations in time constant are tracked properly using the new technique, but the linear Kalman filter fails to do so. Both model validation and thermodynamic laws confirm that the new technique gives unbiased estimates and that the assumed thermocouple model is adequate.


1999 ◽  
Vol 82 (5) ◽  
pp. 2120-2129 ◽  
Author(s):  
Pascal Legendre

Electrophysiological recordings of outside-out patches to fast-flow applications of glycine were made on patches derived from the Mauthner cells of the 50-h-old zebrafish larva. As for glycinergic miniature inhibitory postsynaptic currents (mIPSCs), depolarizing the patch produced a broadening of the transient outside-out current evoked by short applications (1 ms) of a saturating concentration of glycine (3 mM). When the outside-out patch was depolarized from −50 to +20 mV, the peak current varied linearly with voltage. A 1-ms application of 3 mM glycine evoked currents that activated rapidly and deactivated biexponentially with time constants of ≈5 and ≈30 ms (holding potential of −50 mV). These two decay time constants were increased by depolarization. The fast deactivation time constant increased e-fold per 95 mV. The relative amplitude of the two decay components did not significantly vary with voltage. The fast component represented 64.2 ± 2.8% of the total current at −50 mV and 54.1 ± 10% at +20 mV. The 20–80% rise time of these responses did not show any voltage dependence, suggesting that the opening rate constant is insensitive to voltage. The 20–80% rise time was 0.2 ms at −70 mV and 0.22 ms at +20 mV. Responses evoked by 100–200 ms application of a low concentration of glycine (0.1 mM) had a biphasic rising phase reflecting the complex gating behavior of the glycine receptor. The time constant of these two components and their relative amplitude did not change with voltage, suggesting that modal shifts in the glycine-activated channel gating mode are not sensitive to the membrane potential. Using a Markov model to simulate glycine receptor gating behavior, we were able to mimic the voltage-dependent change in the deactivation time course of the responses evoked by 1-ms application of 3 mM glycine. This kinetics model incorporates voltage-dependent closing rate constants. It provides a good description of the time course of the onset of responses evoked by the application of a low concentration of glycine at all membrane potentials tested.


2005 ◽  
Vol 16 (08) ◽  
pp. 614-621 ◽  
Author(s):  
Patrick N. Plyler ◽  
Ashley Blair Hill ◽  
Timothy D. Trine

The present study investigated the effects of expansion time constants on the objective performance of 20 hearing instrument users fitted binaurally with digital in-the-ear products. Objective performance was evaluated in quiet using the Connected Speech Test and in noise using the Hearing in Noise Test. Results indicated that objective performance in quiet and in noise decreased as the expansion time constant increased. Furthermore, expansion time constants affected the objective performance of listeners with varying degrees of hearing loss in a similar manner.


1989 ◽  
Vol 67 (1) ◽  
pp. 40-46 ◽  
Author(s):  
Paul B. Taylor ◽  
Reinhard K. Helbing ◽  
Sean Rourke ◽  
Dennis Churchill

Cardiac hypertrophy was induced in adult female Wistar rats following 12 days of daily subcutaneous injections of isoproterenol (ISO). The left atria responded with a 13–14% increase in tissue growth, while the ventricles achieved a 34–39% increased tissue mass. Maximum force generation and twitch characteristics in 1.0 mM external Ca2+ for the left atria or the right papillary muscle were unchanged in the ISO-treated animals. The force–interval relation was determined at 26 °C between 0.5 and 120 s. The development of maximum force clearly passed through two phases identified as alpha and beta. To characterize these two processes the data were fitted to a two-term linear combination of exponentials (two-compartment model). The time constant and capacity of each process to contribute to the whole force–interval curve was determined by a four-parameter least square fit method. In control atrial muscle the time constants for the alpha and beta processes were 0.47 and 11.23 s, respectively. The contribution of each process to the total force curve in control atrial muscle was approximately 50% alpha and 50% beta. Following ISO-induced growth the time constants were 0.38 and 13.33 s with a shift of contributions towards 60% alpha and 40% beta. Control papillary muscle from the right ventricle had a similar alpha time constant of 0.49 s compared with atrial muscle but possessed a considerably slower beta time constant of 26.17 s. The contribution of each process to interval-dependent force development was 44.5 and 55.5%, respectively. Treatment with ISO to induce ventricular growth resulted in a 20% reduced alpha time constant, with a 45% increased contribution by the alpha process. These results suggest that during the development of catecholamine-induced hypertrophy, there is a significant change in the fundamental alpha process which appears to be mediated by a reduced time constant and an enhanced capacity to contribute to force development.Key words: excitation–contraction, interval-dependent force recovery, post-rest contractions, cardiac muscle, sarcoplasmic reticulum.


1887 ◽  
Vol 42 (251-257) ◽  
pp. 289-296 ◽  

The time-constant for currents of any normal type in a given conductor is the time in which free currents of that type fall to 1/ e of their original strength. In strictness there are for any conductor an infinite series of time-constants, corresponding to the various normal types, but in such a case as that of a coil of wire one of these is very great in comparison with the rest, which belong to types in which the current is in opposite directions in different parts of a section of the wire. And in all cases the time-constant corresponding to the most persistent type which can be present under given circumstances is, of course, the one which is most important from an experimental point of view.


2004 ◽  
Vol 14 (03) ◽  
pp. 769-774
Author(s):  
HYEONGNAM KIM ◽  
JAESUN LEE ◽  
WU LU

Trapping effects are investigated to examine the post-gate annealing effects on AlGaN/GaN high-mobility electron transistors (HEMTs) using pulsed I-V and transient measurements. In the unannealed devices, shallow traps are identified, which have an activation of 38 meV at a drain bias of 7 V. The time constant of these traps is determined to be ~0.5 μs. Devices annealed at 400°C for 10 minutes have a significantly smaller number of traps. However, a small number of traps with a longer time constant of 9.2 μs are created or activated during post-gate annealing. 20-minute annealing at 400°C leads to the increase of the number of traps with emission time constants of 21.6 μs and 1.25 ms. The breakdown voltage improvement by post-gate annealing is attributed to the removal or significant reduction of the shallow level traps.


1999 ◽  
Vol 81 (4) ◽  
pp. 1749-1759 ◽  
Author(s):  
Corinna Pelz ◽  
Johannes Jander ◽  
Hendrik Rosenboom ◽  
Martin Hammer ◽  
Randolf Menzel

I A in Kenyon cells of the mushroom body of honeybees resembles shaker currents: kinetics, modulation by K+, and simulation. Cultured Kenyon cells from the mushroom body of the honeybee, Apis mellifera, show a voltage-gated, fast transient K+ current that is sensitive to 4-aminopyridine, an A current. The kinetic properties of this A current and its modulation by extracellular K+ ions were investigated in vitro with the whole cell patch-clamp technique. The A current was isolated from other voltage-gated currents either pharmacologically or with suitable voltage-clamp protocols. Hodgkin- and Huxley-style mathematical equations were used for the description of this current and for the simulation of action potentials in a Kenyon cell model. Activation and inactivation of the A current are fast and voltage dependent with time constants of 0.4 ± 0.1 ms (means ± SE) at +45 mV and 3.0 ± 1.6 ms at +45 mV, respectively. The pronounced voltage dependence of the inactivation kinetics indicates that at least a part of this current of the honeybee Kenyon cells is a shaker-like current. Deactivation and recovery from inactivation also show voltage dependency. The time constant of deactivation has a value of 0.4 ± 0.1 ms at −75 mV. Recovery from inactivation needs a double-exponential function to be fitted adequately; the resulting time constants are 18 ± 3.1 ms for the fast and 745 ± 107 ms for the slow process at −75 mV. Half-maximal activation of the A current occurs at −0.7 ± 2.9 mV, and half-maximal inactivation occurs at −54.7 ± 2.4 mV. An increase in the extracellular K+concentration increases the conductance and accelerates the recovery from inactivation of the A current, affecting the slow but not the fast time constant. With respect to these modulations the current under investigation resembles some of the shaker-like currents. The data of the A current were incorporated into a reduced computational model of the voltage-gated currents of Kenyon cells. In addition, the model contained a delayed rectifier K+ current, a Na+current, and a leakage current. The model is able to generate an action potential on current injection. The model predicts that the A current causes repolarization of the action potential but not a delay in the initiation of the action potential. It further predicts that the activation of the delayed rectifier K+ current is too slow to contribute markedly to repolarization during a single action potential. Because of its fast activation, the A current reduces the amplitude of the net depolarizing current and thus reduces the peak amplitude and the duration of the action potential.


Sign in / Sign up

Export Citation Format

Share Document