scholarly journals Research and Analysis on the Supporting Structure of the Second Lining of the Tunnel in the Phyllite Stratum

2020 ◽  
Vol 198 ◽  
pp. 02014
Author(s):  
Wei Zhiquan ◽  
Huang Baisheng ◽  
Yang Lu ◽  
Wei Yonghao ◽  
Qiu Jianqiao

The reasonable construction of the secondary lining structure of the tunnel is an important link to ensure the stability of the surrounding rock of the tunnel. Taking a phyllite stratum tunnel project in Jiangxi as the background, the Flac3D finite difference software was used to numerically simulate and analyze the supporting structure of the secondary lining. The impact of support timing on surrounding rock stress. The calculation results show that with the progress of the construction step, the main period of the displacement of the vault is after the excavation of the upper section of the tunnel before the upper section support; The plastic zone of the surrounding rock changes obviously, especially above the tunnel, and finally the plastic zone develops to the ground; the stress of the surrounding rock shows a decreasing trend with the increase of the time of the secondary lining. The research results can provide certain guiding significance for the construction of the second lining of the tunnel under similar geological conditions.

2011 ◽  
Vol 90-93 ◽  
pp. 1900-1903
Author(s):  
Fu Ming Wang ◽  
Xiao Long Li ◽  
Yan Hui Zhong ◽  
Xiao Guang Chen

Taking Chaijiazhuang Tunnel of Lingnan Expressway as project background, the stability analysis of surrounding rock was performed based on the coupled fluid-solid theory. The distributions of stress field, displacement field and plastic zone of rock mass after excavation of tunnel were discussed considering coupled effect between flow and stress under the condition of different rock level and tunnel depth. Compared with the calculation results of not considering coupling effect, the maximum deformation, maximum principle stress and plastic zone size of wall rock were obviously increased when considering coupling effect, which showed a remarkable influence of coupled fluid-solid effect on the stability of tunnel surrounding rock. Some conclusions were drawn and may provide some guidance to the design and construction of tunnels in water-rich strata.


2012 ◽  
Vol 170-173 ◽  
pp. 1520-1523
Author(s):  
Sheng Ji Jin ◽  
Zhe Shu ◽  
Da Sheng Zhang ◽  
Zi Xin Liu

In order to analyze the different construction program under the tunnel surrounding rock stress, strain and plastic zone changes, we take water tunnel group of nuclear power plant as basic project and the application of software FLACIS3D numerical simulation.The results show that: During the tunnel excavation and support group process, the different rock tunnel construction program can produce different stress, displacement and plastic zone extended range of distribution and other aspects.To interval-type excavation program,although previously disturbing effect of the excavation of the tunnel construction and tunnel excavation of rock, it can generate less impact on the stability of surrounding rock. For the latter excavation of the tunnel, the tunnel project area affected by the first digging,the stress can be released, the stability of the first excavation of the tunnel effect is also small.Comparing to sequential and parallel program-type excavation program, the use of interval-style group of rock tunnel excavation will help stabilize the body.


2019 ◽  
Vol 136 ◽  
pp. 04023
Author(s):  
Ming Zhao ◽  
Ke Li ◽  
Hong Yan Guo ◽  
KaiCheng Hua

Based on the special geological conditions of a tunnel in Qingyuan section of Huizhou-Zhanzhou Expressway, FLAC3d numerical simulation software is used to simulate the rheological properties and instability of surrounding rock in large-section fully weathered sandstone section, and the stability and loss of surrounding rock are analyzed. The deformation of the dome and the face at steady state is analyzed. It is found that: 1) when the surrounding rock is in a stable state, the deformation curve of the dome is smooth. When the surrounding rock of the face is unstable, the front of the face appears ahead. Deformation should be first strengthened on the surrounding rock in front of the face. 2) The arched foot is an important part of the instability of the surrounding rock. In order to prevent the expansion of the collapsed part, the arched part should be reinforced. 3) In order to obtain the limit state of surrounding rock stability, the strength of surrounding rock is reduced, and the strength reduction coefficient corresponding to the displacement sudden point is taken as the safety factor of rock stability around the hole, and the stability safety coefficients of surrounding rock of each construction step are greater than 1.2. 4) The dynamic standard values of deformation control in the whole construction stage are obtained by analyzing the deformation curves of each data monitoring point with time in the corresponding time period of each construction step.


2019 ◽  
Vol 2019 ◽  
pp. 1-16 ◽  
Author(s):  
Huabin Zhang ◽  
Qingqing Zhang ◽  
Laigui Wang

In this study, an analytical solution of stress, strain, and displacement, in the elastic and plastic zone is proposed. The solution is derived on the basis of ideal elastoplastic mechanical model of spherical salt cavern with shear dilatation behavior, by adopting Hoek-Brown (H-B) criterion. The solution obtains not only in small and large strain stage but also in creep stage. The proposed solution is validated, by comparison of the obtained results with numerical results in FLAC3D. The results indicate that the result obtained adopting the H-B criterion is closer to that one obtained adopting the Mohr-Coulomb (M-C). The H-B criterion is more applicable for the salt cavern construction as it considers the structural characteristics of the rock salt formation. The displacement difference obtained by two different methods decreases with the increase of GSI or running pressure, but it increases with the enlarged angle of dilation. The influence of different assumptions of elastic strain of plastic zone on displacements is more significant under large strain conditions. The influence of the angle of dilation on displacements is more obvious when the elastic strain of plastic zone is given to stationary values, and the influence degree increases with the enlarged angle of dilation. Under the same conditions, the creep displacement decreases with the increase of GSI, and both the creep displacement and the effect degree enhance with the enlarged dilation angle. The proposed solutions can be used in the stability analysis of surrounding rock in the construction and operation of salt cavern storage.


2012 ◽  
Vol 443-444 ◽  
pp. 267-271
Author(s):  
Xu Dong Cheng ◽  
Peng Ju Qin

In this paper, the mechanical behaviors of pipe roof and bolt of shallow and unsymmetrical tunnel in soft rock are analyzed. Through the finite element software Phase2.0, combined with the geological conditions that construction site often appear, the mechanical behaviors of pipe roof and bolt and surrounding rock in the process of horseshoe highway tunnel construction in the condition that surface is soft rock and underground for the bedrock are analyzed. Research results show that: after tunnel excavation in soft rock, surrounding rock near the tunnel is easy to suffer soft-rock large deformation even failure, which needs to timely support;Due to the impact of the unsymmetrical tunnel, the mechanical behaviors of surrounding rock are unsymmetrical, such as the maximum displacement of tunnel around 0.4 m distant from apex of arch ring, the stress is asymmetrical on both sides of the tunnel arch ring etc; In addition, pipe roof can effectively prevent from the displacement of soft rock strata, improve tunnel strength factor, reduce the plastic zone of surrounding rock. This paper provides theoretical basis for the design of pipe roof and bolt.


2012 ◽  
Vol 164 ◽  
pp. 414-417
Author(s):  
Jia Ming Han

Commonly used finite element strength reduction to calculate the safety factor of slope,to analyze the stability of the slope[1~3]. Recently it also proposed the methods to evaluate the safety factor for the stability of surrounding rock of underground chambers and supporting structural mechanics[4~6]. For Qinling Mountains of the complex geological conditions in the Maanziliang highway tunnel, this article use the finite element method from the bolt resist tension, bolt length, the force of sprayed layer of concrete to computing gradeⅤsurrounding rock section of primary support safety factor, to give evaluation to support mechanics of the Maanziliang tunnel.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Junwen Zhang ◽  
Yulin Li

There are series of problems faced by most of the coal mines in China, ranging from low-coal recovery rate and strained replacement of working faces to gas accumulation in the upper corner of coalfaces. Based on the gob-side entry retaining at the No. 18205 working face in a coal mine in Shanxi Province, theoretical analysis, numerical simulation, and engineering practice were comprehensively used to study the mechanical characteristics of the influence of the width of the filling body beside the roadway and the stability of surrounding rock in a high-gas-risk mine. The rational width of the filling body beside the roadway was determined, and a concrete roadway-side support with a headed reinforcement-integrated strengthening technique was proposed, which have been applied in engineering practice. The stability of the filling body beside the roadway is mainly influenced by the movement of the overlying rock strata, and the stability of the surrounding rock can be improved effectively by rationally determining the width of the filling body beside the roadway. When the width of the roadway-side filling body is 2.5 m, the surrounding rock convergence of the gob-side entry retaining is relatively small at only 5% of the convergence ratio. It has been shown that the figure for roof separation is relatively low, and strata behaviors are relatively alleviated and gas density do not exceed the limit, which are the best results of gob-side entry retaining. The results of this research can provide theoretical guidance for excavation of coal mines with similar geological conditions and have some referential significance to safety and efficient production in coal mines.


2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
MingZheng Zhu ◽  
Yugui Yang ◽  
Feng Gao ◽  
Juan Liu

The deformation and failure of tunnel surrounding rock is the result of tunnel excavation disturbance and rock stress release. When the local stress of surrounding rock exceeds the elastic limit of rock mass, the plastic analysis of surrounding rock must be carried out to judge the stability of tunnel. In this study, the Lade–Duncan yield criterion is used to calculate the analytic solutions for the surrounding rock in a tunnel, and the radius and displacement of the plastic zone are deduced using an equilibrium equation. The plastic zone radius and displacement based on Lade–Duncan criterion and Mohr–Coulomb criterion were compared by using single-factor analysis method under the different internal friction angles, in situ stresses, and support resistances. The results show that the solutions of the radius and displacement of plastic zone calculated by the Lade–Duncan criterion are close to those of Mohr–Coulomb criterion under the high internal friction angle and support resistance or low in situ rock stress; however, the radius and displacement of the plastic zone calculated by the Lade–Duncan criterion are larger under normal circumstances, and the Lade–Duncan criterion is more applicable to the stability analysis of the surrounding rock in a tunnel.


2014 ◽  
Vol 638-640 ◽  
pp. 798-803
Author(s):  
Yong Tao Zhang

As the excavation of tunnels, there are new channels of the groundwater drainage. The original supply of the circulatory system has been destroyed. The effects of groundwater to rock mass of surrounding rock are aggravated. In this paper, combined with a new highway tunnel project, the model is built according to the design parameters and the site engineering geological conditions of the tunnel. The fluid-structure interaction module of the finite difference software FLAC3D is used for the research on tunnel excavation. The distribution of seepage field, the stability of surrounding rock and rock deformation under saturated conditions during the tunnel excavation have been analyzed. The simulation results have certain guiding meaning on fracture development, the stability design of tunnels in water-rich stratum and the design and construction of anti-drainage.


2013 ◽  
Vol 838-841 ◽  
pp. 889-893
Author(s):  
Biao Li ◽  
Feng Dai ◽  
Nu Wen Xu ◽  
Chun Sha

The right bank underground powerhouse of Houziyan hydropower station is a typical deep-buried type with high geostress and complicated geological conditions. To monitor and analyze the stability of surrounding rock mass during continuous excavation of the powerhouse excavation and locate the potential failure zones, an ESG (Engineering Seismology Group) microseismic monitoring system manufactured in Canada was installed in April, 2013. The wave velocity of the monitoring system was determined through fixed blasting tests. And the average location error is the minimum while P-wave velocity is 5700m/s, less than 10m and meeting the system request. By combining the temporal and spatial distribution regularity of microseimic events with field excavation, micro-crack clusters and potential instability zones were identified and delineated. The results will provide a reference for later excavations and supports of the underground powerhouse. Furthermore, a new monitoring method can also be supplied for the stability analysis of surrounding rock mass in deep-buried underground powerhouses.


Sign in / Sign up

Export Citation Format

Share Document