scholarly journals Application of modern geodetic tools in the operation of railway reconstructions

2021 ◽  
Vol 227 ◽  
pp. 04004
Author(s):  
Yuriy Ten ◽  
Rustam Oymatov ◽  
Kholmurod Khayitov ◽  
Guzal Saydalieva ◽  
Ulugbek Nulloev ◽  
...  

This research considers the survey of the circular curve of the operating railway using an electronic total station, which determines the coordinates of points on the curve and calculates the coordinates of the main points of the circular curve. The goal is obtaining information with sufficient accuracy about the spatial position of the parameters of the railway plan, i.e. the device of the railway plan: turning angles, radiuses, lengths of straight lines and curves. Recommendations for determining the elements necessary to locate the main points of curves and their coordinates are considered. The advantage of this method is the simplicity of calculation, which allows the compiled program and high efficiency of determining the main points of curves using a modern geodetic device-the electronic total station Trimble VX (USA).

2014 ◽  
Vol 644-650 ◽  
pp. 2359-2365
Author(s):  
Xiao Bo Lin

In this paper, the average reprojection geometrical errors on all images of a spatial straight line is taken as the restructuring and optimization target function to ensure the optimal result to be acquired; a spatial straight line is expressed by use of the Plücker coordinates for the proposal of the analytical method of correcting the double linear restriction on the Plücker coordinates of noise-included spatial straight lines; during the optimization process, to ensure parameters that meet double linear restriction, the iteration renewal process is expressed by at least 4 parameters, to increase the precision of restructuring results. Experiments results derived from simulation data and real images have all demonstrated the high efficiency and precision of the algorithm proposed in this paper.


2012 ◽  
Vol 446-449 ◽  
pp. 2947-2950
Author(s):  
Feng Yun Yang ◽  
Wen Zhao ◽  
Mao Lin Xu

Discuss monitoring way of slope sliding of ANGANG open mine on Robotic Measuring System TM30 technology and processing data’s method, according to survey speciafication of deformation observation, analyses deformation result and compares it with speciafication of deformation observation, reports it to the mine company to insure safety and stability of mine produce. Deformation monitoring on Robotic total station TM30 that is Observation flexible, high precision and high efficiency is worth spreading.


Sensors ◽  
2020 ◽  
Vol 20 (15) ◽  
pp. 4272
Author(s):  
Jen-Yung Lin ◽  
Huan-Liang Tsai ◽  
Wen-Chi Sang

This paper originally proposes a wireless multisensor module with illuminance, temperature, relative humidity (RH) and carbon dioxide (CO2) sensors in an aseptic jar incubator for a solid-state fermentation (SSF) of Cordyceps militaris culture. The light intensity, ambient temperature, RH and CO2 are the critical cultivation factors of C. militaris. First, these sensors are integrated in a multisensor platform which is installed inside a lid and covered with a high-efficiency particulate air (HEPA) membrane of class H14 for sterilization of bacteria and viruses. The observations of sensors are then transmitted by a wireless XBee network where the slave sensor node is fixed at the top of jar lid and the master radio node receives data and uploads to an on-site monitoring node. The acquired information is further transmitted to an iCloud database and displayed in a web-based monitoring system. The results illustrate the proposed wireless multisensor module was validated with sufficient accuracy, reliable confidence and well-tolerance for C. militaris cultivation biotechnology under aseptic conditions.


2012 ◽  
Vol 152-154 ◽  
pp. 1779-1784
Author(s):  
Hong Bing Xin ◽  
Qiang Huang ◽  
Yue Qing Yu

Mechanism analysis and synthesis commonly used analytic method and graphical method, etc., but the homotopy method has high efficiency in nonlinear analysis of mechanism. This paper applies the homotopy continuation method PHCpack solver to solve mechanism position and orientation, and draws the mechanism configuration according to the results obtained, the relative error of numerical results to exact solutions shows that the homotopy continuation method PHCpack solver can provide sufficient accuracy of mechanism position and orientation analysis, and meet the engineering needs.


1988 ◽  
Vol 102 ◽  
pp. 41
Author(s):  
E. Silver ◽  
C. Hailey ◽  
S. Labov ◽  
N. Madden ◽  
D. Landis ◽  
...  

The merits of microcalorimetry below 1°K for high resolution spectroscopy has become widely recognized on theoretical grounds. By combining the high efficiency, broadband spectral sensitivity of traditional photoelectric detectors with the high resolution capabilities characteristic of dispersive spectrometers, the microcalorimeter could potentially revolutionize spectroscopic measurements of astrophysical and laboratory plasmas. In actuality, however, the performance of prototype instruments has fallen short of theoretical predictions and practical detectors are still unavailable for use as laboratory and space-based instruments. These issues are currently being addressed by the new collaborative initiative between LLNL, LBL, U.C.I., U.C.B., and U.C.D.. Microcalorimeters of various types are being developed and tested at temperatures of 1.4, 0.3, and 0.1°K. These include monolithic devices made from NTD Germanium and composite configurations using sapphire substrates with temperature sensors fabricated from NTD Germanium, evaporative films of Germanium-Gold alloy, or material with superconducting transition edges. A new approache to low noise pulse counting electronics has been developed that allows the ultimate speed of the device to be determined solely by the detector thermal response and geometry. Our laboratory studies of the thermal and resistive properties of these and other candidate materials should enable us to characterize the pulse shape and subsequently predict the ultimate performance. We are building a compact adiabatic demagnetization refrigerator for conveniently reaching 0.1°K in the laboratory and for use in future satellite-borne missions. A description of this instrument together with results from our most recent experiments will be presented.


Author(s):  
Joseph J. Comer

Domains visible by transmission electron microscopy, believed to be Dauphiné inversion twins, were found in some specimens of synthetic quartz heated to 680°C and cooled to room temperature. With the electron beam close to parallel to the [0001] direction the domain boundaries appeared as straight lines normal to <100> and <410> or <510> directions. In the selected area diffraction mode, a shift of the Kikuchi lines was observed when the electron beam was made to traverse the specimen across a boundary. This shift indicates a change in orientation which accounts for the visibility of the domain by diffraction contrast when the specimen is tilted. Upon exposure to a 100 KV electron beam with a flux of 5x 1018 electrons/cm2sec the boundaries are rapidly decorated by radiation damage centers appearing as black spots. Similar crystallographio boundaries were sometimes found in unannealed (0001) quartz damaged by electrons.


Author(s):  
J. M. Cowley ◽  
R. Glaisher ◽  
J. A. Lin ◽  
H.-J. Ou

Some of the most important applications of STEM depend on the variety of imaging and diffraction made possible by the versatility of the detector system and the serial nature, of the image acquisition. A special detector system, previously described, has been added to our STEM instrument to allow us to take full advantage of this versatility. In this, the diffraction pattern in the detector plane may be formed on either of two phosphor screens, one with P47 (very fast) phosphor and the other with P20 (high efficiency) phosphor. The light from the phosphor is conveyed through a fiber-optic rod to an image intensifier and TV system and may be photographed, recorded on videotape, or stored digitally on a frame store. The P47 screen has a hole through it to allow electrons to enter a Gatan EELS spectrometer. Recently a modified SEM detector has been added so that high resolution (10Å) imaging with secondary electrons may be used in conjunction with other modes.


Author(s):  
Kenneth H. Downing

Three-dimensional structures of a number of samples have been determined by electron crystallography. The procedures used in this work include recording images of fairly large areas of a specimen at high tilt angles. There is then a large defocus ramp across the image, and parts of the image are far out of focus. In the regions where the defocus is large, the contrast transfer function (CTF) varies rapidly across the image, especially at high resolution. Not only is the CTF then difficult to determine with sufficient accuracy to correct properly, but the image contrast is reduced by envelope functions which tend toward a low value at high defocus.We have combined computer control of the electron microscope with spot-scan imaging in order to eliminate most of the defocus ramp and its effects in the images of tilted specimens. In recording the spot-scan image, the beam is scanned along rows that are parallel to the tilt axis, so that along each row of spots the focus is constant. Between scan rows, the objective lens current is changed to correct for the difference in specimen height from one scan to the next.


Author(s):  
K.M. Hones ◽  
P. Sheldon ◽  
B.G. Yacobi ◽  
A. Mason

There is increasing interest in growing epitaxial GaAs on Si substrates. Such a device structure would allow low-cost substrates to be used for high-efficiency cascade- junction solar cells. However, high-defect densities may result from the large lattice mismatch (∼4%) between the GaAs epilayer and the silicon substrate. These defects can act as nonradiative recombination centers that can degrade the optical and electrical properties of the epitaxially grown GaAs. For this reason, it is important to optimize epilayer growth conditions in order to minimize resulting dislocation densities. The purpose of this paper is to provide an indication of the quality of the epitaxially grown GaAs layers by using transmission electron microscopy (TEM) to examine dislocation type and density as a function of various growth conditions. In this study an intermediate Ge layer was used to avoid nucleation difficulties observed for GaAs growth directly on Si substrates. GaAs/Ge epilayers were grown by molecular beam epitaxy (MBE) on Si substrates in a manner similar to that described previously.


Author(s):  
P. G. Kotula ◽  
D. D. Erickson ◽  
C. B. Carter

High-resolution field-emission-gun scanning electron microscopy (FESEM) has recently emerged as an extremely powerful method for characterizing the micro- or nanostructure of materials. The development of high efficiency backscattered-electron detectors has increased the resolution attainable with backscattered-electrons to almost that attainable with secondary-electrons. This increased resolution allows backscattered-electron imaging to be utilized to study materials once possible only by TEM. In addition to providing quantitative information, such as critical dimensions, SEM is more statistically representative. That is, the amount of material that can be sampled with SEM for a given measurement is many orders of magnitude greater than that with TEM.In the present work, a Hitachi S-900 FESEM (operating at 5kV) equipped with a high-resolution backscattered electron detector, has been used to study the α-Fe2O3 enhanced or seeded solid-state phase transformations of sol-gel alumina and solid-state reactions in the NiO/α-Al2O3 system. In both cases, a thin-film cross-section approach has been developed to facilitate the investigation. Specifically, the FESEM allows transformed- or reaction-layer thicknesses along interfaces that are millimeters in length to be measured with a resolution of better than 10nm.


Sign in / Sign up

Export Citation Format

Share Document