scholarly journals Gray Box Time Variant Clogging behaviour and Pressure Drop Prediction of the Air Filter in the HVAC System

2021 ◽  
Vol 246 ◽  
pp. 10002
Author(s):  
Hossein Alimohammadi ◽  
Kristina Vassiljeva ◽  
Eduard Petlenkov ◽  
Martin Thalfeldt ◽  
Alo Mikola ◽  
...  

Identification and prediction of clogging behavior in heating, ventilation, and air conditioning (HVAC) filters is crucial to avoid issues such as system overheating, energy waste, lower indoor air quality, etc. Researchers are focusing more on the particle loading characteristics of a filter medium in a laboratory environment under steady-state conditions, fixed particle concentrations, area of porosity, dust feed and volumetric flow rate. However, recent research still shows uncertainties in modeling as well as the implementation problems of constructing the HVAC laboratory test bench and equipment. In addition, subjects such as non-uniform particle deposition depreciation of the condition and various type of mechanical filters such as fibrous, fabric, granular, and membrane filter or electrostatic filters which typically used in HVAC systems perform under some assumptions and still need more research. The studies become even more difficult acquiring a large number of time-varying and noisy signals. Another approach among studies is data-driven knowing that Building Automation System (BAS) is not equipped with appropriate sensor measuring the clogging, it is needed to drive the clogging mathematical model from the pressure drop signal. This paper bridges the gap between particle-size study and black box modeling of HVAC filter which has not received much attention from authors. The proposed method assumes that the pressure drop is the result of two time-varying functions; f(t), which represents the dynamics of clogging and, g(t), which refers to dynamics of remained terms. The exponential and polynomial of second order functions are proposed to express the clogging behavior. The software package based on Particle Swarm Optimization Artificial Bee Colony (PSOABC) algorithm, is developed and implemented to estimate the coefficients of the clogging functions based on smallest RMSE, high coefficient of correlation and acceptable tracking. Five Air Handling Unit (AHUs) are selected for practical verification of the model and the results show that the applied method can successfully predict clogging and pressure drop behaviour of HVAC filters.

Author(s):  
Curtis M. Vickery

Abstract Automotive air filter pleat parameters must often be estimated by design engineers, affecting overall filter performance. This paper examines pressure-flow response of and particle deposition upon three different pleat profiles. Pleat models, analysis operating point, and analysis parameters were based on a Purolator automotive air filter application. Computational assumptions included steady state, incompressible, isothermal, laminar air flow with a modified/extended Darcy law equation used for media flow computations. Inlet velocities were set to maintain the filter rated volumetric flow rate with equal pressure drop through each pleat model. 1–50 micron diameter spherical particles were used in Monte Carlo particle deposition analyses. Once introduced into the computed flow fields, particle trajectories were computed assuming inertial, body, buoyancy, and drag forces were active. Histograms depicting particle starting and deposition locations were constructed for five particle size sub-classes. Flow field and structural influences on particle deposition tendencies were noted.


1996 ◽  
Vol 118 (1) ◽  
pp. 29-35 ◽  
Author(s):  
K. Minemura ◽  
K. Egashira ◽  
K. Ihara ◽  
H. Furuta ◽  
K. Yamamoto

A turbine flowmeter is employed in this study in connection with offshore oil field development, in order to measure simultaneously both the volumetric flow rates of air-water two-phase mixture. Though a conventional turbine flowmeter is generally used to measure the single-phase volumetric flow rate by obtaining the rotational rotor speed, the method proposed additionally reads the pressure drop across the meter. After the pressure drop and rotor speed measured are correlated as functions of the volumetric flow ratio of the air to the whole fluid and the total volumetric flow rate, both the flow rates are iteratively evaluated with the functions on the premise that the liquid density is known. The evaluated flow rates are confirmed to have adequate accuracy, and thus the applicability of the method to oil fields.


Author(s):  
Alireza Dastan ◽  
Omid Abouali

In this paper pressure drop and particle deposition in a microchannel with a hydraulic diameter of 225 micrometer is investigated numerically. Several hundred micron length fibers caught at the entrance of the channels making a “fiber web” also is modeled in this research. Governing equations for the flow field are solved with an Eulerian approach while the equations of particle motion in the flow are solved by a Lagrangian approach. Assuming the symmetry in the domain, one channel and the corresponding plenum are studied in the computational domain. For studying the effects of fibers in the flow, two fiber webs with four and six solid fibers are studied. The increase of pressure drop in the microchannel because of the entrance fiber web is computed and discussed. Also deposition and collection of the particles with various diameters at the fiber webs are also presented.


Author(s):  
Y-M Han ◽  
K-G Sung ◽  
J W Sohn ◽  
S-B Choi

This article presents a control performance comparison of electrorheological (ER) fluid-based valves between cylindrical and plate configurations. After identifying Bingham characteristics of chemical starch-based ER fluid, an analytical model of each valve is established. In order to reasonably compare valve performance, design constraint is imposed by the choosing the same electrode gap and length, and each ER valve is manufactured. Valve performances such as pressure drop and response time are then evaluated and compared through analytical model and experiment. In addition, a time-varying pressure tracking controllability of each ER valve is experimentally realized.


METANA ◽  
2019 ◽  
Vol 15 (2) ◽  
pp. 49-56
Author(s):  
Dista Yoel Tadeus ◽  
Khasnan Azazi ◽  
Didik Ariwibowo

Ikan hias dan vegetasi air memiliki rentang toleransi terhadap nilai parameter lingkungan. Parameter tersebut hendaknya senantiasa diawasi demi kelangsungan hidupnya. Internet of Things (IoT) telah dimanfaatkan sebagai sistem monitoring dan otomasi parameter lingkungan ikan dan vegetasi air namun sistem ini membutuhkan biaya yang tinggi. Tujuan penelitian ini adalah mengembangkan suatu model sistem monitoring berbasis IoT berbiaya rendah untuk memberikan informasi parameter pH dan kekeruhan air setiap saat kepada pemilik ikan hias. Sistem ini dibangun menggunakan komponen opensource dan sensor berbiaya rendah. Data monitoring digunakan untuk mengaktifkan aktuator berupa filter air. Filter akan aktif apabila tingkat kekeruhan air sudah melebihi batas kekeruhan yang ditentukan. Pengujian kekeruhan air aquarium menunjukkan saat kekeruhan mencapai 3000 ntu pukul 14.12 pompa aktif dan filter bekerja sampai kekeruhan berada pada nilai 498 ntu pada pukul 17.00 dan pompa mati secara otomatis. Nilai pH dan kekeruhan air berhasil ditampilkan dengan baik di aplikasi Blynk pada ponsel. Hasil pengujian menyimpulkan bahwa sistem monitoring yang dikembangkan telah berhasil diimplementasikan dengan baik.  Ornamental fish and aquatic vegetation have a tolerance range of environmental parameter values. These parameters should always be monitored for survival. Internet of Things (IoT) has been utilized as a monitoring and automation system for environmental parameters of fish and aquatic vegetation, but this system requires high costs. The purpose of this study is to develop a low-cost IoT-based monitoring system model to provide information on pH parameters and water turbidity at any time to ornamental fish owners. This system is built using opensource components and low-cost sensors. Monitoring data is used to activate the actuator in the form of a water filter. The filter will active if the turbidity level of water has exceeded the specified turbidity limit. The aquarium water turbidity test showed that when the turbidity reached 3000 ntu at 14.12 the pump was active and the filter worked until the turbidity was at 498 ntu at 17.00 and the pump automatically shut down. The pH value and the turbidity of the water were successfully displayed in the Blynk application on the cellphone. The test results concluded that the monitoring system developed was successfully implemented. 


Proceedings ◽  
2018 ◽  
Vol 2 (13) ◽  
pp. 870
Author(s):  
Kerem Kaya ◽  
Ahmet Yasin Celik ◽  
Senol Mutlu

This work reports for the first-time integration of continuous microfluidic channels to the paper-based electro-osmotic pumps (EOPs) with liquid bridges. In addition, 0.2 μm pore sized cellulose acetate (CA) membrane filter is used to eliminate pressure-driven flow instead of filter paper which is common in paper microfluidics and has an average pore size of 10 μm. A factor of 57 increase in hydraulic resistance is achieved with the new paper. Fabrication of the pumps and microfluidic channels using paper, wax, adhesive film and PMMA plates is explained. Volumetric flow rate of 19 nL/min is achieved in the microfluidic system with 61 V/cm electrical field magnitude applied to DI water. The capability of the integrated system is shown with precise liquid motion in a Y-shaped microfluidic channel integrated with two EOPs.


2020 ◽  
pp. 0958305X2094531
Author(s):  
Hebert Lugo-Granados ◽  
Lázaro Canizalez-Dávalos ◽  
Martín Picón-Núñez

The aim of this paper is to develop guidelines for the placing of new coolers in cooling systems subject to retrofit. The effects of the accumulation of scale on the flow system are considered. A methodology to assess the interconnected effect of local fluid velocity and fouling deposition is developed. The local average fluid velocity depends on the water flow rate distribution across the piping network. The methodology has four main calculation components: a) the determination of the flow rate distribution across the piping network, b) the prediction of fouling deposition, c) determination of the hydraulic changes and the effect on fouling brought about by the placing of new exchangers into an existing structure, and d) the calculation of the total cooling load and pressure drop of the system. The set of disturbances introduced to the system through fouling and the incorporation of new coolers, create network responses that eventually influence the cooling capacity and the pressure drop. In this work, these interactions are analysed using two case studies. The results indicate that, from the thermal point of view, the incorporation of new heat exchangers is recommended in series. The limit is the point where the increase of the total pressure drop causes a reduction in the overall volumetric flow rate. New coolers added in parallel create a reduction of pressure drop and an increase in the overall water flow rate; however, this increase is not enough to counteract the reduction of fluid velocity and heat capacity removal.


2019 ◽  
Vol 7 (11) ◽  
pp. 6001-6011 ◽  
Author(s):  
Nara Han ◽  
Yo Seph Lee ◽  
Byung Kwon Kaang ◽  
Wooree Jang ◽  
Hye Young Koo ◽  
...  

A lottery draw machine-inspired novel movable air filter (MAF) system is presented in which MAFs are vigorously moved or rotated to form a high electric field and capture particulate matter (PM) particles.


Sign in / Sign up

Export Citation Format

Share Document