scholarly journals Correlation study of fuel injection strategies on engine emission and lubricating oil performance

2021 ◽  
Vol 268 ◽  
pp. 01008
Author(s):  
Chuanqi Wang ◽  
Guotian Li ◽  
Enxing Zhang ◽  
Zenghui Yin ◽  
Jing Hao

Based on different fuel injection strategies, this paper analyzes the factors such as engine original emission smoke, exhaust temperature, soot content, wear spot diameter and kinematic viscosity. The study found that delaying injection timing, increased afterburn, engine original soot emissions, exhaust gas temperature increase, but will increase the thermal load of the parts. At the same time, the growth rate of lubricant soot and kinematic viscosity increased; The wear spot diameter at the same soot content is reduced, and the wear is reduced. In the end, the paper finally selects 1°CA BTDC as the optimal fuel injection strategy to achieve rapid aging of engine lubricating oil in order to complete the assessment of the anti-wear performance of lubricating oil.

2019 ◽  
Vol 22 (1) ◽  
pp. 152-164 ◽  
Author(s):  
Ripudaman Singh ◽  
Taehoon Han ◽  
Mohammad Fatouraie ◽  
Andrew Mansfield ◽  
Margaret Wooldridge ◽  
...  

The effects of a broad range of fuel injection strategies on thermal efficiency and engine-out emissions (CO, total hydrocarbons, NOx and particulate number) were studied for gasoline and ethanol fuel blends. A state-of-the-art production multi-cylinder turbocharged gasoline direct injection engine equipped with piezoelectric injectors was used to study fuels and fueling strategies not previously considered in the literature. A large parametric space was considered including up to four fuel injection events with variable injection timing and variable fuel mass in each injection event. Fuel blends of E30 (30% by volume ethanol) and E85 (85% by volume ethanol) were compared with baseline E0 (reference grade gasoline). The engine was operated over a range of loads with intake manifold absolute pressure from 800 to 1200 mbar. A combined application of ethanol blends with a multiple injection strategy yielded considerable improvement in engine-out particulate and gaseous emissions while maintaining or slightly improving engine brake thermal efficiency. The weighted injection spread parameter defined in this study, combined with the weighted center of injection timing defined in the previous literature, was found well suited to characterize multiple injection strategies, including the effects of the number of injections, fuel mass in each injection and the dwell time between injections.


Author(s):  
K Anand ◽  
R P Sharma ◽  
P S Mehta

Suitability of vegetable oil as an alternative to diesel fuel in compression ignition engines has become attractive, and research in this area has gained momentum because of concerns on energy security, high oil prices, and increased emphasis on clean environment. The experimental work reported here has been carried out on a turbocharged direct-injection multicylinder truck diesel engine using diesel fuel and jatropha methyl ester (JME)-diesel blends. The results of the experimental investigation indicate that an increase in JME quantity in the blend slightly advances the dynamic fuel injection timing and lowers the ignition delay compared with the diesel fuel. A maximum rise in peak pressure limited to 6.5 per cent is observed for fuel blends up to 40 per cent JME for part-load (up to about 50 per cent load) operations. However, for a higher-JME blend, the peak pressures decrease at higher loads remained within 4.5 per cent. With increasing proportion of JME in the blend, the peak pressure occurrence slightly advances and the maximum rate of pressure rise, combustion duration, and exhaust gas temperature decrease by 9 per cent, 15 per cent and 17 per cent respectively. Although the changes in brake thermal efficiencies for 20 per cent and 40 per cent JME blends compared with diesel fuel remain insignificant, the 60 per cent JME blend showed about 2.7 per cent improvement in the brake thermal efficiency. In general, it is observed that the overall performance and combustion characteristics of the engine do not alter significantly for 20 per cent and 40 per cent JME blends but show an improvement over diesel performance when fuelled with 60 per cent JME blend.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Tikendra Nath Verma ◽  
Upendra Rajak ◽  
Abhishek Dasore ◽  
Asif Afzal ◽  
A. Muthu Manokar ◽  
...  

AbstractThe continuous rise in demand, combined with the depletion of the world's fossil fuel reserves, has forced the search for alternative fuels. The biodiesel produced from Roselle is one such indigenous biodiesel with tremendous promise, and its technical ability to operate with compression ignition engines is studied in this work. To characterize the fuel blends, researchers used experimental and empirical approaches while operating at engine loads of 25, 50, 75, and 100%, and with fuel injection timings of 19°, 21°, 23°, 25°, and 27° before top dead center. Results indicate that for 20% blend with the change of injection timing from 19° bTDC to 27° bTDC at full load, brake specific fuel consumption and exhaust gas temperature was increased by 15.84% and 4.60% respectively, while brake thermal efficiency decreases by 4.4%. Also, an 18.89% reduction in smoke, 5.26% increase in CO2, and 12.94% increase in NOx were observed. In addition, an empirical model for full range characterization was created. With an r-squared value of 0.9980 ± 0.0011, the artificial neural network model constructed to characterize all 10 variables was able to predict satisfactorily. Furthermore, substantial correlation among specific variables suggested that empirically reduced models were realistic.


Author(s):  
Adam B. Dempsey ◽  
Scott Curran ◽  
Robert Wagner ◽  
William Cannella

Gasoline compression ignition (GCI) concepts with the majority of the fuel being introduced early in the cycle are known as partially premixed combustion (PPC). Previous research on single- and multicylinder engines has shown that PPC has the potential for high thermal efficiency with low NOx and soot emissions. A variety of fuel injection strategies have been proposed in the literature. These injection strategies aim to create a partially stratified charge to simultaneously reduce NOx and soot emissions while maintaining some level of control over the combustion process through the fuel delivery system. The impact of the direct injection (DI) strategy to create a premixed charge of fuel and air has not previously been explored, and its impact on engine efficiency and emissions is not well understood. This paper explores the effect of sweeping the direct injected pilot timing from −91 deg to −324 deg ATDC, which is just after the exhaust valve closes (EVCs) for the engine used in this study. During the sweep, the pilot injection consistently contained 65% of the total fuel (based on command duration ratio), and the main injection timing was adjusted slightly to maintain combustion phasing near top dead center. A modern four cylinder, 1.9 l diesel engine with a variable geometry turbocharger (VGT), high pressure common rail injection system, wide included angle injectors, and variable swirl actuations was used in this study. The pistons were modified to an open bowl configuration suitable for highly premixed combustion modes. The stock diesel injection system was unmodified, and the gasoline fuel was doped with a lubricity additive to protect the high pressure fuel pump and the injectors. The study was conducted at a fixed speed/load condition of 2000 rpm and 4.0 bar brake mean effective pressure (BMEP). The pilot injection timing sweep was conducted at different intake manifold pressures, swirl levels, and fuel injection pressures. The gasoline used in this study has relatively high fuel reactivity with a research octane number of 68. The results of this experimental campaign indicate that the highest brake thermal efficiency (BTE) and lowest emissions are achieved simultaneously with the earliest pilot injection timings (i.e., during the intake stroke).


Author(s):  
Mei Xiao ◽  
Ying Zhang ◽  
Haiming Wang ◽  
Lei Zhang

A lubricant is a substance that lessens friction and wear between mechanical parts. A good quality lubricating oil is required for protecting the mechanical equipment and reducing energy consumption. Its performance index (friction coefficient) could be measured by the four-ball wear test. For the morphological analysis of testing data from the four-ball wear test, determination of wear angle is very important for measuring the wear spot diameter, validity of the four-ball wear test and recognition of abnormal wear scar. On the basis of character analysis and image processing technology, a novel wear angle determination algorithm for wear scar is presented in this article. The direction of the wear scar (wear angle) is determined based on angle transformation and grey consistency (the smallest change of grey level). Simulation results show that the algorithm has high precision, good robustness and less time consuming. The average absolute error of our method is 0.8° and the absolute error of 95% of samples is <4°. The average runtime per frame is 3.896 s in the simulation platform.


2019 ◽  
pp. 146808741986805 ◽  
Author(s):  
Lingzhe Rao ◽  
Yilong Zhang ◽  
Sanghoon Kook ◽  
Kenneth S Kim ◽  
Chol-Bum Kweon

This study shows the in-cylinder soot reduction mechanism associated with injection timing variation in a small-bore optical diesel engine. For the three selected injection timings, three optical-/laser-based imaging diagnostics were performed to show the development of high-temperature reaction and soot within the cylinder, which include OH* chemiluminescence, planar laser–induced fluorescence of hydroxyl and planar laser–induced incandescence. In addition, detailed soot morphology analysis was conducted using thermophoresis-based soot particle sampling from two locations within the piston bowl, and the subsequent analysis of transmission electron microscope (TEM) images of the sampled soot aggregates was also conducted. The results suggest that when fuel injection timing is varied, ambient gas temperature makes a predominant effect on soot formation and oxidation. This is primarily combustion phasing effect as the advanced fuel injection moved the start of combustion closer to the top dead centre, and therefore, soot formation and oxidation occurred at elevated ambient gas temperature. There was an overall development pattern of in-cylinder soot consistently found for three injection timings of this study. The planar laser–induced incandescence images showed that a few small soot pockets first appear around the jet axis, which promptly grow into large soot regions behind the head of the flame marked planar laser–induced fluorescence of hydroxyl. The soot signals disappear due to significant oxidation induced by surrounding OH radicals. When the injection timing is advanced, the soot formation becomes higher as indicated by higher total laser–induced incandescence coverage, increased sampled particle counts and larger and more stretched soot aggregate structures. However, soot oxidation is also enhanced under this elevated ambient temperature environment. At the most advanced injection timing of this study, the enhanced soot oxidation outperformed the increased soot formation with both peak laser–induced incandescence signal coverage and late-cycle coverage showing lower values than those of more retarded injection timings.


Author(s):  
Fangxi Xie ◽  
Wenliang Zheng ◽  
Hong Chen ◽  
Yu Liu ◽  
Yan Su ◽  
...  

Influence of fuel injection parameters of the single and split injection strategies on combustion, performance and particle number emission had been investigated on a gasoline direct injection engine with stoichiometric mixture combustion under medium and low engine operating conditions. The test results showed that the optimal injection timing for single injection strategy was about 290–280 °CA BTDC, and an earlier or a later injection timing could lead to a deterioration of particle number emission. For split injection strategy, the injected parameters also needed to be optimized subtly in order to improve particle number emission. When the inappropriate injected parameters were adopted, particle number emission increased rather than decrease when compared with single injection strategy. Similar to single injection strategy, when the second injection timing of split injection strategy further retarded from 280 °CA BTDC, the particle number emission and brake-specific fuel consumption also started to deteriorate, and the in-cylinder combustion process was delayed and slowed. The optimal first injection timing was about 300 °CA BTDC. When the first injection timing was delayed to 280 °CA BTDC with the second injection timing being 260 °CA BTDC, the particle number emission increased and the shortened interval time between first and second fuel injection might have had a negative effect. The smaller difference of the fuel quantity between the first and the second injection was not good for the improvement of particle number emission and brake-specific fuel consumption, and the best injection proportion was 2:8. Overall, the engine particle number emission could be decreased to some extent, which could reach about 10–30%, by split injection strategy with optimal control parameters at medium and low engine loads.


Author(s):  
Abhishek Sharma ◽  
Avdhesh Tyagi ◽  
Yashvir Singh ◽  
Nishant K Singh ◽  
Navneet K Pandey

The rapid consumption of crude oil and resulting pollution are very severe problems in modern energy sectors. To meet these global problems, biodiesels obtained from non-edible plants can play a very crucial role. Keeping this idea in mind the present study focuses on making some efforts for the best utilization of innovative blends of Prosopis juliflora biodiesel in the operation of diesel engines. Four engine input parameters viz. fuel injection pressure (16–24 MPa), P. Juliflora biodiesel blends (0–10%), shaft loads (20–100%) and injection timing (15–31°bTDC (before top dead centre)) are selected for optimization process. The experiments were executed in accordance with response surface methodology. The results of the experiments revealed that the optimum combination for engine input parameters were at fuel injection timing 30°bTDC, fuel injection pressure 22 MPa, 4% P. juliflora biodiesel blending at 59% of engine load to achieve best performance. The individual desirability of brake thermal efficiency, brake specific fuel consumption, exhaust gas temperature and peak cylinder pressure were found to be 0.888, 0.949, 0.624 and 0.749, respectively, and the composite desirability of engine responses was found to be 0.7923 which makes the results acceptable.


Author(s):  
Adam Dempsey ◽  
Scott Curran ◽  
Robert Wagner ◽  
William Cannella

Gasoline compression ignition concepts with the majority of the fuel being introduced early in the cycle are known as partially premixed combustion (PPC). Previous research on single- and multi-cylinder engines has shown that PPC has the potential for high thermal efficiency with low NOx and soot emissions. A variety of fuel injection strategies has been proposed in the literature. These injection strategies aim to create a partially stratified charge to simultaneously reduce NOx and soot emissions while maintaining some level of control over the combustion process through the fuel delivery system. The impact of the direct injection strategy to create a premixed charge of fuel and air has not previously been explored, and its impact on engine efficiency and emissions is not well understood. This paper explores the effect of sweeping the direct injected pilot timing from −91° to −324° ATDC, which is just after the exhaust valve closes for the engine used in this study. During the sweep, the pilot injection consistently contained 65% of the total fuel (based on command duration ratio), and the main injection timing was adjusted slightly to maintain combustion phasing near top dead center. A modern four cylinder, 1.9 L diesel engine with a variable geometry turbocharger, high pressure common rail injection system, wide included angle injectors, and variable swirl actuation was used in this study. The pistons were modified to an open bowl configuration suitable for highly premixed combustion modes. The stock diesel injection system was unmodified, and the gasoline fuel was doped with a lubricity additive to protect the high pressure fuel pump and the injectors. The study was conducted at a fixed speed/load condition of 2000 rpm and 4.0 bar brake mean effective pressure (BMEP). The pilot injection timing sweep was conducted at different intake manifold pressures, swirl levels, and fuel injection pressures. The gasoline used in this study has relatively high fuel reactivity with a research octane number of 68. The results of this experimental campaign indicate that the highest brake thermal efficiency and lowest emissions are achieved simultaneously with the earliest pilot injection timings (i.e., during the intake stroke).


2021 ◽  
Author(s):  
Tikendra Nath Verma ◽  
Upendra Rajak ◽  
Satishchandra Salam ◽  
Asif Afzal ◽  
A. Muthu Manokar ◽  
...  

Abstract Persistent increase in demand and depletion of world fossil fuel reserve has necessitated the lookout for alternative fuels. One such indigenous biodiesel with significant potential is the biodiesel extracted from Roselle whose technical feasibility to operate with compression ignition engine is investigated in this study. Experimental and empirical methodologies had been employed to characterise the fuel blends while operating at engine loads of 25%, 50%, 75% and 100%, and with fuel injection timings of 19°, 21°, 23°, 25° and 27° bTDC. Results showed that for 20% blend, with advanced injection timing from 19° bTDC to 27° bTDC at full load, brake specific fuel consumption and exhaust gas temperature for 20% blend was higher by 15.84% and 4.60%, while decrease in brake thermal efficiency by 4.4%. Also, 18.89% reduction in smoke, 5.26% increase in CO2 and 12.94% increase in NOx were observed. In addition, an empirical model was developed for full range characterisation. The artificial neural network model thus developed to characterise all the 10 variables was able to predict satisfactorily with r-squared value of 0.9980 ± 0.0011. Further, high correlation amongst certain variables indicated to plausible empirically reduced models.


Sign in / Sign up

Export Citation Format

Share Document