scholarly journals Numerical studies of soil base deformations from reconstructed multi-storey building to nearby buildings

2021 ◽  
Vol 274 ◽  
pp. 03020
Author(s):  
Ilisar Mirsayapov ◽  
Ildus Shakirov ◽  
Daniya Nurieva

During the building reconstruction with floors addition, there is a need to evaluate the building frame and foundation soil bearing capacity, especially if there are deviations from the design parameters. As a result of the field and numerical studies, we determined the basic change patterns in the stress-strain state of the 12-storey building load-bearing structures with a monolithic reinforced concrete frame due to uneven pile foundation deformation. We also found the influence degree of the existing deviations from the design parameters to the structures bearing capacity. The research results can be applied in reconstruction conditions with a significant increase in the load on the existing load-bearing elements of the building and on the pile foundation.

2012 ◽  
Vol 204-208 ◽  
pp. 2478-2482
Author(s):  
You Bao Jiang ◽  
Yu Lai Zhao ◽  
Wei Jun Yang ◽  
Zhi Ling Gong

After the Wenchuan earthquake, Chinese Code for Seismic Design of Buildings (GB50011-2010) adjusts some seismic design parameters. Taking into account the randomness of gravity load and earthquake action and the uncertainty of steel strength and concrete strength, this paper analyzes the reliability of seismic bearing capacity of reinforced concrete frame bottom columns. Based on the structural analysis software PKPM, which is in accordance with code for seismic design of buildings, the reliability index of seismic bearing capacity of reinforced concrete frame bottom columns is calculated by the Monte Carlo method with different parameters, such as different seismic intensity, different building storey number, different seismic adjustment coefficient (increment coefficient of frame columns end moment and increment coefficient of design value of combination moment of underlying frame columns lower end section), different horizontal span number, different column location (side column and interior column) and so on. The results indicate that the reliability index can reach 2.0 or above, and can meet the target requirements for all cases which are designed with the current code for seismic design of buildings (GB50011-2010).


2016 ◽  
Vol 2 (5) ◽  
pp. 221-225 ◽  
Author(s):  
Mahdi Bamdad ◽  
Abdolreza Sarvghad Moghadam ◽  
Mohammad Javad Mehrani

Many methods have been developed in order to study the impact behavior of solids and structures. Two common methods are finite element and experimental method. The nonlinear finite element method is one the most effective methods of predicting the behavior of RC beams from zero-load to failure and its fracture, yield and ultimate strengths. The advantage of this method is its ability to make this prediction for all sections of the assessed RC beam and all stages of loading. This paper compares the experimental results obtained for a RC frame with the numerical results calculated by ABAQUS software, and plots both sets of results as hysteresis–displacement diagrams. This comparison shows that the numerical FEM implemented via ABAQUS software produce valid and reliable results for load bearing capacity of RC frames subjected to cyclic loads, and therefore has significant cost and time efficiency advantages over the alternative approach


2014 ◽  
Vol 580-583 ◽  
pp. 113-117
Author(s):  
Shi Jie Lu ◽  
Hua Dong Chen ◽  
Wei Chen ◽  
Tong Xiang ◽  
Xie Feng Hong

Using self―made model device, researchers studied the characteristics of foundation settlement of sandy soil and pile foundation load―bearing in sandy soil. Through weight loading, researchers analyzed the phenomenon of foundation settlement. Then, researchers embedded friction piles in sand, so as to analyzed pile foundation bearing capacity. The methods and results of the research can provide guidance for teaching of Soil mechanics and foundation engineering.


2011 ◽  
Vol 250-253 ◽  
pp. 3115-3119 ◽  
Author(s):  
Li Tian ◽  
Hao Wang

A numerical analysis for the progressive collapse of a reinforced concrete frame caused by an explosion in this structure’s basement is presented in this paper. The whole process from the detonation of the explosive charge to the complete demolition is reproduced. The main work is focused on the role of soil in structural collapse and failure mode of structural members. The analysis is simulated using ANSYS/LS-DYNA and proposes a new simulation method which is comparatively accurate and economic.


2013 ◽  
Vol 351-352 ◽  
pp. 342-346
Author(s):  
Tai Hua Yang ◽  
Xiao Yu ◽  
Jian Wu Gong ◽  
Bin Tang ◽  
Yang Zhi Zhong ◽  
...  

According to the domestic and foreign various building codes and a kind of limit fitting formula, to calculate and analyze the compressive bearing capacity of sandwich reinforced concrete beam-column nodes in a high-rising frame structure engineering, and to compare with the results calculated by Midas. They shown those are the facts that cant be neglected, the compressive bearing capacity of the sandwich node core area concrete in beam and plates constraint would improve and the amplitude of improving would be great. But current Chinese building codes haven't included them in the formal design provisions, these ways have to be perfected. In the same time, beam and plate constraint would also have a certain effect to the shear bearing capacity. By contrast, the shear bearing capacity in considering beam and plate constraint would increase 12% to 24%, it would get to 91% of the limit fitting formula calculation value when the short side was sheared, and it is 92% when the long side was sheared. That shown it is quite perfect in considering the effect of the orthogonal beam-plate constraints in domestic seismic code.


2018 ◽  
Vol 2018 ◽  
pp. 1-17 ◽  
Author(s):  
Tianzhong Ma ◽  
Yanpeng Zhu ◽  
Xiaohui Yang ◽  
Yongqiang Ling

It is very necessary to research the bearing characteristics of composite pile group foundations with long and short piles under lateral load in loess areas, because these foundations are used widely. But few people researched this problem in loess areas up to now worldwide. In this paper, firstly, an indoor test model of a composite pile foundation with long and short piles is designed and then employed to explore the vertical load bearing characteristics and load transfer mechanisms of a single pile, a four-pile group, and a nine-pile group under different lateral loads. Secondly, ANSYS software is employed to analyze the load-bearing characteristics of the test model, and for comparison with the experimental results. The results demonstrate the following. (1) The lateral force versus pile head displacement curves of the pile foundation exhibit an obvious steep drop in section, which is a typical feature of piercing damage. A horizontal displacement limit of the pile foundation is 10 mm and 6mm for the ones sensitive to horizontal displacement. (2) The axial force along a pile and frictional resistance do not coincide, due to significant variations and discontinuities in the collapsibility of loess; a pile body exhibits multiple neutral points. Therefore, composite pile groups including both long and short piles could potentially maximize the bearing capacity and reduce pile settlement. (3) The distribution of stress and strain along the pile length is mainly concentrated from the pile head to a depth of about 1/3 of the pile length. If the lateral load is too large, short piles undergo rotation about their longitudinal axis and long piles undergo flexural deformation. Therefore, the lateral bearing capacity mainly relies on the strength of the soil at the interface with the pile or the horizontal displacement of the pile head.


2013 ◽  
Vol 438-439 ◽  
pp. 1414-1418
Author(s):  
Wei Ding ◽  
Qing Liu ◽  
Bing Yu Wang ◽  
Kang Kang Sun ◽  
Feng Tao Sui

This paper determines the bearing capacity of pile and shaft resistance by the curve match method of high strain dynamic testing. By the comparison of bearing capacity of pile between the testing results of static loading and dynamic high strain, the reliability and surveying precision of the curve match method is analyzed, and the error sources and reasons are explored, to reasonably determine the design parameters of pile foundation engineering.


2016 ◽  
Vol 20 (10) ◽  
pp. 1572-1585 ◽  
Author(s):  
Zi-qin Jiang ◽  
Yan-lin Guo ◽  
Ai-Lin Zhang ◽  
Chao Dou ◽  
Cai-Xia Zhang

The double rectangular tube assembled buckling-restrained brace is a new type of buckling energy consumption buckling-restrained brace. Because of its external restraining members, which are bound by high-strength bolts, its mechanical mechanism is more complicated and its failure modes are more varied. In this study, the double rectangular tube assembled buckling-restrained brace composition and three types of end constructions are introduced in detail. The influences of different design parameters on the performance of double rectangular tube assembled buckling-restrained brace are studied by numerical analysis methods; the possible failure modes and the influence of the end strengthening construction of double rectangular tube assembled buckling-restrained brace are also investigated, and a number of suggestions are proposed to improve this design. This study shows that the pinned double rectangular tube assembled buckling-restrained brace has four types of typical failure modes, namely, overall buckling failure, external end local pressure-bearing failure, bending failure of the extended strengthened core region and bolt threading failure. Rational design can prevent a buckling-restrained brace from losing its load-bearing capacity. In addition, compared with the end strengthening scheme with an external hoop, the end strengthening scheme with a strengthened bench can improve the load-bearing capacity of the double rectangular tube assembled buckling-restrained brace more effectively, and a reasonable design can also save materials.


2013 ◽  
Vol 353-356 ◽  
pp. 1986-1989
Author(s):  
Jin Shi Guo ◽  
Xin Ying Xie

“strong beam and weak column”is the main failure states of reinforced concrete frame structure in the earthquake.This paper is the experimental study of the influence on the virtual cross-section bearing capacity on extremity of frame beam in reinforced concrete,which is affected by some element,such as slab reinforcement,the rigidity of orthogonal beam and so on.Exploring the mechanism of slab and frame work together to determine the width of effective flange,which provides references for structural design and engineering application.


Sign in / Sign up

Export Citation Format

Share Document