scholarly journals The clique approach to identifying critical elements in gas transmission networks

2021 ◽  
Vol 289 ◽  
pp. 03009
Author(s):  
Sergey Vorobev ◽  
Anton Kolosnitsyn ◽  
Ilya Minarchenko

We consider the gas transmission network operating on the territory of the Russian Federation. This network includes gas fields, gas consumers, nodal compressor stations, underground gas storages, which, depending on the given scenario of the system operation, can act as gas sources or gas consumers. The nodes are connected by means of gas pipelines. Because natural gas is used in heat and power engineering and electricity, the gas transmission network may be exposed to terrorist threats, and the actions of intruders may be directed both at gas production facilities and gas pipelines. To simulate intruders attacks, a model of the attacker-defender type was proposed. In this model, the defender, represented by the system operator, solves the problem of finding the maximum flow to meet the needs of gas consumers. The attacker, in turn, attempts to minimize the maximum flow in the gas transmission network by excluding either nodes or gas pipelines. Gas transmission networks in Russia and Europe are very extensive, ramified, and have many bridges and reserve gas pipelines. Therefore, to inflict maximum damage to the system, attacks on cliques, that is, on several interconnected objects, are modelled. The article presents the results of test calculations, in which we identify the most significant combinations of objects in the gas transmission network in terms of the potential threat from terrorist attacks.

Energies ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 501
Author(s):  
Sergey Vorobev ◽  
Anton Kolosnitsyn ◽  
Ilya Minarchenko

This article is devoted to the definition of the most important combinations of objects in critical network infrastructures. This study was carried out using the example of the Russian gas transmission network. Since natural gas is widely used in the energy sector, the gas transmission network can be exposed to terrorist threats, and the actions of intruders can be directed at both gas fields and gas pipelines. A defender–attacker model was proposed to simulate attacks. In this model, the defender solves the maximum flow problem to satisfy the needs of gas consumers. By excluding gas pipelines, the attacker tries to minimize the maximum flow in the gas transmission network. Russian and European gas transmission networks are territorially very extensive and have a significant number of mutual intersections and redundant pipelines. Therefore, one of the approaches to inflicting maximum damage on the system is modeled as an attack on a clique. A clique in this study is several interconnected objects. The article presents the list of the most interconnected sections of main gas pipelines, the failure of which can cause the greatest damage to the system in the form of a gas shortage among consumers. Conclusions were drawn about the applicability of the maximum clique method for identifying the most important objects in network critical infrastructures.


Atmosphere ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1528
Author(s):  
Meng-Hao Li ◽  
Abu Bakkar Siddique ◽  
Ali Andalibi ◽  
Naoru Koizumi

Background: Hokkaido was the first Japanese prefecture to be affected by COVID-19. Since the beginning of the pandemic, the Japanese government has been publishing the information of each individual who was tested positive for the virus. Method: The current study analyzed the 1269 SARS-CoV-2 cases confirmed in Hokkaido in order to examine sex-based differences in symptomology and infectiveness, as well as the status of reinfections and the viral transmission networks. Results: The majority of asymptomatic patients were females and older. Females were 1.3-fold more likely to be asymptomatic (p < 0.001) while a decade of difference in age increased the likelihood of being asymptomatic by 1% (p < 0.001). The data contained information up to quaternary viral transmission. The transmission network revealed that, although asymptomatic patients are more likely to transmit the virus, the individuals infected by asymptomatic cases are likely to be asymptomatic (p < 0.001). Four distinct co-occurrences of symptoms were observed, including (i) fever/fatigue, (ii) pharyngitis/rhinitis, (iii) ageusia/anosmia, and (iv) nausea/vomiting/diarrhea. The presences of diarrhea (p = 0.05) as well as nausea/vomiting (p < 0.001) were predictive of developing dyspnea, i.e., severe disease. About 1% of the patients experienced reinfection. Conclusions: Sex and symptomatology appear to play important roles in determining the levels of viral transmission as well as disease severity.


2020 ◽  
Vol 10 (1) ◽  
pp. 17-32
Author(s):  
Manuel Cabarcas Simancas ◽  
Angélica María Rada Santiago ◽  
Brandon Humberto Vargas Vera

The purpose of this article is to set out the benefits of using the dense phase gas transport in future projects in the Caribbean Sea and to verify that when operating pipelines at high pressures, more mass per unit of volume is transported, and liquid formation risks are mitigated in hostile environments and low temperatures.This study contains key data about gas production fields in deep and ultra-deep waters around the world, which serve as a basis for research and provide characteristics for each development to be contrasted with the subsea architecture proposed in this paper. Additionally, analogies are established between the target field (Gorgón-1, Kronos-1 and Purple Angel-1) and other offshore gas fields that have similar reservoir properties. Using geographic information systems, the layout of a gas pipeline and a subsea field architecture that starts in the new gas province is proposed.Finally, using a hydraulic simulation tool, the gas transport performance in dense phase is analyzed and compared with the conventional way of transporting gas by underwater pipelines, achieving up to 20 % in cost savings when dense phase is applied.


2015 ◽  
pp. 99-104 ◽  
Author(s):  
N. L. Mamaeva ◽  
S. A. Petrov

A research and comparison of natural and damaged (due to the active development of oil and gas fields) permafrost soils in the Jamalo-Nenets Autonomous Okrug were carried out. The analysis was run of correlation between an average monthly temperature of air, an average monthly sum of precipitation, the weight humidity and the thickness of the seasonal thawed layer. The conclusions were drawn about a poor resistance of landscapes on the permafrost rocks to the anthropogenic interventions, which in its turn is accompanied by the cryogenic processes and unfavorable influences on the Extreme North biosphere.


Author(s):  
Xiaoling Li ◽  
Xinwei Zhou

Data security is very important in the multi-path transmission networks (MTN). Efficient data security measurement in MTN is crucial so as to ensure the reliability of data transmission. To this end, this paper presents an improved algorithm using single-single minimal path based back-up path (SSMP-BP), which is designed to ensure the data transmission when the second path is out of work. From the simulation study, the proposed algorithm has the better network reliability compared with existing double minimal path based backup path (DMP-BP) approach. It could be found that, the proposed algorithm uses less back-up paths compared with DMP-BP so that less network resources like nodes are achieved.


Energies ◽  
2019 ◽  
Vol 12 (3) ◽  
pp. 419
Author(s):  
Mads Nannestad ◽  
Zhe Zhang ◽  
Jundi Jia ◽  
Emil Jensen ◽  
Peter Randewijk

This paper investigates the reactive power balance of the Zealand side of the Danish transmission system (DK2) by using QV-curves. The study is performed in cooperation with Energinet, who is the Danish transmission system operator (TSO). Firstly, this paper aims to map the reactive power balance with the current challenges in the system, which appears due to a decision of changing overhead lines in the scenic area to cables. Secondly, a method is derived for obtaining a comprehensive overview of the impacts that future projects might have on the system. By dividing the transmission system into smaller areas, it is possible to analyze how the reactive power will affect the voltage; moreover, it is favorable to analyze and handle the challenges in the reactive power balance locally. This helps the TSO to quickly determine the lack of reactive power devices and issues that might occur in future expansions of the system. For this paper, a full-scale model of DK2 and SCADA-data has been utilized. It covers the period from 01-01-2016 to 20-08-2017 between the TSO and the Distribution System Operator (DSO). The studies have shown how the location of the wind production will create issues in the reactive power balance.


2011 ◽  
Vol 51 (2) ◽  
pp. 684
Author(s):  
Peter Cook ◽  
Yildiray Cinar ◽  
Guy Allinson ◽  
Charles Jenkins ◽  
Sandeep Sharma ◽  
...  

Successful completion of the first stage of the CO2CRC Otway Project demonstrated safe and effective CO2 storage in the Naylor depleted gas field and confirmed our ability to model and monitor subsurface behaviour of CO2. It also provided information of potential relevance to CO2 enhanced gas recovery (EGR) and to opportunities for CO2 storage in depleted gas fields. Given the high CO2 concentration of many gas fields in the region, it is important to consider opportunities for integrating gas production, CO2 storage in depleted gas fields, and CO2-EGR optimisation within a production schedule. The use of CO2-EGR may provide benefits through the recovery of additional gas resources and a financial offset to the cost of geological storage of CO2 from gas processing or other anthropogenic sources, given a future price on carbon. Globally, proven conventional gas reserves are 185 trillion m3 (BP Statistical Review, 2009). Using these figures and Otway results, a replacement efficiency of 60 % (% of pore space available for CO2 storage following gas production) indicates a global potential storage capacity—in already depleted plus reserves—of approximately 750 Gigatonnes of CO2. While much of this may not be accessible for technical or economic reasons, it is equivalent to more than 60 years of total global stationary emissions. This suggests that not only gas—as a lower carbon fuel—but also depleted gas fields, have a major role to play in decreasing CO2 emissions worldwide.


2019 ◽  
Vol 252 ◽  
pp. 05018 ◽  
Author(s):  
Slawomir Przylucki ◽  
Dariusz Czerwinski

The article presents simulation studies of multipath video transmission implemented as a live monitoring system based on adaptive streaming mechanisms. The transmission network consists of the Wi-Fi infrastructure and a single LTE cell. Both wireless networks are used during the operation of the video monitoring system. The analysis of the obtained results allows us to compare the features of two currently used multipath transmission protocols, MultiPath Quick UDP Internet Connections (MPQUIC) and MultiPath TCP (MPTCP) in the context of their use in adaptive video streaming systems. Also, the article contains a summary of the perceived advantages and disadvantages of using several transmission networks simultaneously for the implementation of video surveillance and monitoring systems.


Sign in / Sign up

Export Citation Format

Share Document