scholarly journals Soot Oxidation in Diesel Exhaust on Silver Catalyst Supported by Alumina, Titanium and Zirconium

2021 ◽  
Vol 302 ◽  
pp. 01008
Author(s):  
Punya Promhuad ◽  
Boonlue Sawatmongkhon

Diesel Particulate Filter (DPF) is used to limit the emission of particulate matter (PM). The operation of DPF has two consecutive functions which are filtration of PM and regeneration. Performance of DPF is reduced by clogging of the filter. This problem is improved by soot oxidation in the regeneration process. The soot is completely oxidized by oxygen when temperature is higher than 600 °C. However, the exhaust gas temperature in normal operating of the diesel engine is lower than the temperature of soot complete oxidation. The problem of low temperature in soot oxidation is improved by oxidation catalyst because the oxidation catalyst is used to reduce light of temperature in soot oxidation. The study’s purpose is to compare the oxidation activity of silver catalyst supported on alumina (Al2O3), Titanium oxide (TiO2), and Zirconium oxide (ZrO2). The compression of soot oxidation on silver catalyst loaded on several support which showed silver base on alumina was the best of soot oxidation compared with titanium oxide and zirconium oxide. The behaviour of soot oxidation in silver base on titanium oxide and zirconium oxide were similar activity.

Author(s):  
Sungjun Yoon ◽  
Hongsuk Kim ◽  
Daesik Kim ◽  
Sungwook Park

Stringent emission regulations (e.g., Euro-6) have forced automotive manufacturers to equip a diesel particulate filter (DPF) on diesel cars. Generally, postinjection is used as a method to regenerate the DPF. However, it is known that postinjection deteriorates the specific fuel consumption and causes oil dilution for some operating conditions. Thus, an injection strategy for regeneration is one of the key technologies for diesel powertrains equipped with a DPF. This paper presents correlations between the fuel injection strategy and exhaust gas temperature for DPF regeneration. The experimental apparatus consists of a single-cylinder diesel engine, a DC dynamometer, an emission test bench, and an engine control system. In the present study, the postinjection timing was in the range of 40 deg aTDC to 110 deg aTDC and double postinjection was considered. In addition, the effects of the injection pressure were investigated. The engine load was varied among low load to midload conditions, and the amount of fuel of postinjection was increased up to 10 mg/stk. The oil dilution during the fuel injection and combustion processes was estimated by the diesel loss measured by comparing two global equivalences ratios: one measured from a lambda sensor installed at the exhaust port and one estimated from the intake air mass and injected fuel mass. In the present study, the differences of the global equivalence ratios were mainly caused by the oil dilution during postinjection. The experimental results of the present study suggest optimal engine operating conditions including the fuel injection strategy to obtain an appropriate exhaust gas temperature for DPF regeneration. The experimental results of the exhaust gas temperature distributions for various engine operating conditions are discussed. In addition, it was revealed that the amount of oil dilution was reduced by splitting the postinjection (i.e., double postinjection). The effects of the injection pressure on the exhaust gas temperature were dependent on the combustion phasing and injection strategies.


Author(s):  
Hyunjun Lee ◽  
Jaesik Shin ◽  
Manbae Han ◽  
Myoungho Sunwoo

The successful utilization of a diesel particulate filter (DPF) to reduce particulate matter (PM) in a passenger car diesel engine necessitates a periodic regeneration of the DPF catalyst without deterioration of the drivability and emission control performance. For successful active DPF regeneration, the exhaust gas temperature should be over 500 °C to oxidize the soot loaded in the DPF. Previous research increased the exhaust gas temperature by applying early and late post fuel injection with a look-up table (LUT) based feedforward control implemented into the engine management system (EMS). However, this method requires enormous calibration work to find the optimal timing and quantity of the main, early, and late post fuel injection with less certainty of accurate torque control. To address this issue, we propose a cylinder pressure based multiple fuel injection (MFI) control method for active DPF regeneration. The feedback control of the indicated mean effective pressure (IMEP), lambda, and DPF upstream temperature was applied to precisely control the injection quantity of the main, early, and late post fuel injection. To determine their fuel injection timings, a mass fraction burned 60% after location of the rate of heat release maximum (MFB60aLoROHRmax) was proposed based on the cylinder pressure information. The proposed control method was implemented in an in-house EMS and validated at several engine operating conditions. During the regeneration period, the exhaust gas temperature tracked the desired temperature, and the engine torque fluctuation was minimized with minimal PM and NOx emissions.


2019 ◽  
Vol 24 (6) ◽  
pp. 263-267
Author(s):  
Maciej Siedlecki ◽  
Paweł Fuć ◽  
Barbara Sokolnicka ◽  
Natlia Szymlet

The article discusses the effect of exhaust aftertreatment systems configuration on the resulting exhaust gas temperature at selected points of the exhaust system. Catalytic reactors and particle filters must reach a specific temperature in order to effectively perform their functions. The temperature they obtain decreases with the increasing distance from the exhaust manifold, as the gases cool along the way. The performed research consisted of measuring the exhaust gas temperature in various places of the exhaust system in simulated driving conditions mapped on the dynamic engine brake station in the aspect of using a particulate filter and its resulting operating efficiency due to the temperature. Measuring the temperature using thermo-couples allowed to assess the probability of achieving full operation of the filters during urban and extra-urban exploitation in a simulation of real driving conditions.


Author(s):  
Yoshifuru Nitta ◽  
Yudai Yamasaki

Abstract Lean-burn gas engines have recently attracted attentions in the maritime industry, because they can reduce NOx, SOx and CO2 emissions. However, since methane (CH4) is the main component of natural gas, the slipped methane which is the unburned methane emitted from the lean-burn gas engines likely contributes to global warming. It is thus important to make progress on exhaust aftertreatment technologies for lean-burn gas engines. A Palladium (Pd) catalyst for CH4 oxidation is expected to provide a countermeasure for slipped methane, because it can activate at lower exhaust gas temperature. However, a deactivation in higher water (H2O) concentration should be overcome, because H2O inhibits CH4 oxidation. This study was performed investigates the effects of exhaust gas temperature or gas composition on active Pd catalyst sites to clarify CH4 oxidation performance in the exhaust gas of lean-burn gas engines. The authors developed the method of estimating effective active sites for the Pd catalyst at various exhaust gas temperature. The estimation method is based on the assumption that active sites used for CH4 oxidation process can be shared with the active sites used for Carbon mono-oxide (CO) oxidation. The molecular of chemisorbed CO on the active sites of the Pd catalyst can provide effective active sites for CH4 oxidation process. To clarify the effects of exhaust gas temperature and compositions on active Pd catalyst sites, the authors developed an experimental system for the new estimation method. This paper introduces experimental results and verifications of the new method, showing that chemisorbed CO volume on a Pd/Al2O3 catalyst is increased with increasing Pd loading in 250–450 °C, simulated as a typical exhaust gas temperature range of lean-burn gas engines. The results provide a part of the criteria for the application of Pd catalysts to the reduction of slipped methane in exhaust gas of lean-burn gas engines.


2015 ◽  
Vol 656-657 ◽  
pp. 538-543 ◽  
Author(s):  
Sirichai Jirawongnuson ◽  
Worathep Wachirapan ◽  
Tul Suthiprasert ◽  
Ekathai Wirojsakunchai

In this research study, a synthetic exhaust gas system is employed to simulate various exhaust conditions similar to those from conventional diesel and Dual Fuel-Premixed Charge Compression Ignition (DF-PCCI) combustion. OEM DOC is tested to compare the effectiveness of reducing CO from both exhaust characteristics. Variations of the temperature and the concentration of CO, THC, and O2 are done to investigate DOC performance on CO reductions according to Design of Experiment (DOE) concept. The results showed that in DF-PCCI exhaust conditions, DOC requires higher exhaust gas temperature as well as O2 concentration to reduce CO emissions.


Author(s):  
Thomas Körfer ◽  
Hartwig Busch ◽  
Andreas Kolbeck ◽  
Christopher Severin ◽  
Thorsten Schnorbus ◽  
...  

Both, the continuous tightening of the exhaust emission standards and the global efforts for a significant lowering of CO2 output in public traffic display significant developments for future diesel engines. These engines will utilize not only the mandatory Diesel oxidation catalyst (DOC) and particulate trap (DPF), but also a DeNOx aftertreatment system as well — at least for heavier vehicles. The DOC as well as actually available sophisticated DeNOx aftertreatment technologies, i.e. LNT and SCR, depends on proper exhaust gas temperatures to achieve a high conversion rates. This aspect becomes continuously critical due to intensified measures for CO2 reduction, which will conclude in a drop of exhaust gas temperatures. Furthermore, this trend has to be taken into account regarding future electrification and hybridization scenarios. In order to ensure the high NOx conversion rates in the EAS intelligent temperature management strategies will be required, not only based on conventional calibration measures, but also a further upgrade of the engine hardware. Advanced split-cooling and similar thermal management technologies offer the merit to lower CO2 emissions on one hand and increase exhaust gas temperature at cold start and warm-up simultaneously on the other hand. Besides this, also variable valve train functionalities deliver a substantial potential of active thermal management. In the context of this paper various concepts for exhaust gas temperature management are investigated and compared. The final judgment will focus on the effectiveness concerning real exhaust temperature increase vs. corresponding fuel economy penalty. Further factors, like operational robustness, consequences on operational strategies and related software algorithms as well as cost are assessed. The utilized reference engine in this advanced program is represented by a refined I-4 research engine to achieve best combustion efficiency at minimal engine-out emissions. The detailed studies were performed with an injection strategy, featuring one pilot injection and one main injection event, and an active, advanced closed-loop combustion control. The engine used in this study allows fulfillment of Euro 6 and Tier 2 Bin 5 emissions standards, while offering high power densities above 80 kW/ltr. As a résumé, it can be stated, that with all accomplished variations a significant increase in temperature downstream low pressure turbine can be achieved. The PI and PoI quantities define dominant parameters for emission formation under cold and warm conditions. By using an exhaust cam-phaser CO-, HC- and NOx emissions can be significantly lowered, separating VVT functions from the other investigated strategies.


2020 ◽  
pp. 431-434
Author(s):  
Oliver Arndt

This paper deals with the conversion of coke fired lime kilns to gas and the conclusions drawn from the completed projects. The paper presents (1) the decision process associated with the adoption of the new technology, (2) the necessary steps of the conversion, (3) the experiences and issues which occurred during the first campaign, (4) the impacts on the beet sugar factory (i.e. on the CO2 balance and exhaust gas temperature), (5) the long term impressions and capabilities of several campaigns of operation, (6) the details of available technologies and (7) additional benefits that would justify a conversion from coke to natural gas operation on existing lime kilns. (8) Forecast view to develop systems usable for alternative gaseous fuels (e.g. biogas).


Sign in / Sign up

Export Citation Format

Share Document