scholarly journals A technologist view of the next decade evolution of the librarian work environment

2018 ◽  
Vol 186 ◽  
pp. 09004
Author(s):  
André Schaaff ◽  
Marc Wenger

The work environment has deeply evolved in recent decades with the generalisation of IT in terms of hardware, online resources and software. Librarians do not escape this movement and their working environment is becoming essentially digital (databases, online publications, Wikis, specialised software, etc.). With the Big Data era, new tools will be available, implementing artificial intelligence, text mining, machine learning, etc. Most of these technologies already exist but they will become widespread and strongly impact our ways of working. The development of social networks that are "business" oriented will also have an increasing influence. In this context, it is interesting to reflect on how the work environment of librarians will evolve. Maintaining interest in the daily work is fundamental and over-automation is not desirable. It is imperative to keep the human-driven factor. We draw on state of the art new technologies which impact their work, and initiate a discussion about how to integrate them while preserving their expertise.

Author(s):  
Xabier Rodríguez-Martínez ◽  
Enrique Pascual-San-José ◽  
Mariano Campoy-Quiles

This review article presents the state-of-the-art in high-throughput computational and experimental screening routines with application in organic solar cells, including materials discovery, device optimization and machine-learning algorithms.


Proceedings ◽  
2021 ◽  
Vol 74 (1) ◽  
pp. 24
Author(s):  
Eduard Alexandru Stoica ◽  
Daria Maria Sitea

Nowadays society is profoundly changed by technology, velocity and productivity. While individuals are not yet prepared for holographic connection with banks or financial institutions, other innovative technologies have been adopted. Lately, a new world has been launched, personalized and adapted to reality. It has emerged and started to govern almost all daily activities due to the five key elements that are foundations of the technology: machine to machine (M2M), internet of things (IoT), big data, machine learning and artificial intelligence (AI). Competitive innovations are now on the market, helping with the connection between investors and borrowers—notably crowdfunding and peer-to-peer lending. Blockchain technology is now enjoying great popularity. Thus, a great part of the focus of this research paper is on Elrond. The outcomes highlight the relevance of technology in digital finance.


2021 ◽  
Vol 54 (6) ◽  
pp. 1-35
Author(s):  
Ninareh Mehrabi ◽  
Fred Morstatter ◽  
Nripsuta Saxena ◽  
Kristina Lerman ◽  
Aram Galstyan

With the widespread use of artificial intelligence (AI) systems and applications in our everyday lives, accounting for fairness has gained significant importance in designing and engineering of such systems. AI systems can be used in many sensitive environments to make important and life-changing decisions; thus, it is crucial to ensure that these decisions do not reflect discriminatory behavior toward certain groups or populations. More recently some work has been developed in traditional machine learning and deep learning that address such challenges in different subdomains. With the commercialization of these systems, researchers are becoming more aware of the biases that these applications can contain and are attempting to address them. In this survey, we investigated different real-world applications that have shown biases in various ways, and we listed different sources of biases that can affect AI applications. We then created a taxonomy for fairness definitions that machine learning researchers have defined to avoid the existing bias in AI systems. In addition to that, we examined different domains and subdomains in AI showing what researchers have observed with regard to unfair outcomes in the state-of-the-art methods and ways they have tried to address them. There are still many future directions and solutions that can be taken to mitigate the problem of bias in AI systems. We are hoping that this survey will motivate researchers to tackle these issues in the near future by observing existing work in their respective fields.


2021 ◽  
Author(s):  
Kai Guo ◽  
Zhenze Yang ◽  
Chi-Hua Yu ◽  
Markus J. Buehler

This review revisits the state of the art of research efforts on the design of mechanical materials using machine learning.


Author(s):  
Bruce Mellado ◽  
Jianhong Wu ◽  
Jude Dzevela Kong ◽  
Nicola Luigi Bragazzi ◽  
Ali Asgary ◽  
...  

COVID-19 is imposing massive health, social and economic costs. While many developed countries have started vaccinating, most African nations are waiting for vaccine stocks to be allocated and are using clinical public health (CPH) strategies to control the pandemic. The emergence of variants of concern (VOC), unequal access to the vaccine supply and locally specific logistical and vaccine delivery parameters, add complexity to national CPH strategies and amplify the urgent need for effective CPH policies. Big data and artificial intelligence machine learning techniques and collaborations can be instrumental in an accurate, timely, locally nuanced analysis of multiple data sources to inform CPH decision-making, vaccination strategies and their staged roll-out. The Africa-Canada Artificial Intelligence and Data Innovation Consortium (ACADIC) has been established to develop and employ machine learning techniques to design CPH strategies in Africa, which requires ongoing collaboration, testing and development to maximize the equity and effectiveness of COVID-19-related CPH interventions.


2021 ◽  
Author(s):  
Richard Büssow ◽  
Bruno Hain ◽  
Ismael Al Nuaimi

Abstract Objective and Scope Analysis of operational plant data needs experts in order to interpret detected anomalies which are defined as unusual operation points. The next step on the digital transformation journey is to provide actionable insights into the data. Prescriptive Maintenance defines in advance which kind of detailed maintenance and spare parts will be required. This paper details requirements to improve these predictions for rotating equipment and show potential to integrate the outcome into an operational workflow. Methods, Procedures, Process First principle or physics-based modelling provides additional insights into the data, since the results are directly interpretable. However, such approaches are typically assumed to be expensive to build and not scalable. Identification of and focus on the relevant equipment to be modeled in a hybrid model using a combination of first principle physics and machine learning is a successful strategy. The model is trained using a machine learning approach with historic or current real plant data, to predict conditions which have not occurred before. The better the Artificial Intelligence is trained, the better the prediction will be. Results, Observations, Conclusions The general aim when operating a plant is the actual usage of operational data for process and maintenance optimization by advanced analytics. Typically a data-driven central oversight function supports operations and maintenance staff. A major lesson-learned is that the results of a rather simple statistical approach to detect anomalies fall behind the expectations and are too labor intensive. It is a widely spread misinterpretation that being able to deal with big data is sufficient to come up with good prediction quality for Prescriptive Maintenance. What big data companies are normally missing is domain knowledge, especially on plant critical rotating equipment. Without having domain knowledge the relevant input into the model will have shortcomings and hence the same will apply to its predictions. This paper gives an example of a refinery where the described hybrid model has been used. Novel and Additive Information First principle models are typically expensive to build and not scalable. This hybrid model approach, combining first principle physics based models with artificial intelligence and integration into an operational workflow shows a new way forward.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Pooya Tabesh

Purpose While it is evident that the introduction of machine learning and the availability of big data have revolutionized various organizational operations and processes, existing academic and practitioner research within decision process literature has mostly ignored the nuances of these influences on human decision-making. Building on existing research in this area, this paper aims to define these concepts from a decision-making perspective and elaborates on the influences of these emerging technologies on human analytical and intuitive decision-making processes. Design/methodology/approach The authors first provide a holistic understanding of important drivers of digital transformation. The authors then conceptualize the impact that analytics tools built on artificial intelligence (AI) and big data have on intuitive and analytical human decision processes in organizations. Findings The authors discuss similarities and differences between machine learning and two human decision processes, namely, analysis and intuition. While it is difficult to jump to any conclusions about the future of machine learning, human decision-makers seem to continue to monopolize the majority of intuitive decision tasks, which will help them keep the upper hand (vis-à-vis machines), at least in the near future. Research limitations/implications The work contributes to research on rational (analytical) and intuitive processes of decision-making at the individual, group and organization levels by theorizing about the way these processes are influenced by advanced AI algorithms such as machine learning. Practical implications Decisions are building blocks of organizational success. Therefore, a better understanding of the way human decision processes can be impacted by advanced technologies will prepare managers to better use these technologies and make better decisions. By clarifying the boundaries/overlaps among concepts such as AI, machine learning and big data, the authors contribute to their successful adoption by business practitioners. Social implications The work suggests that human decision-makers will not be replaced by machines if they continue to invest in what they do best: critical thinking, intuitive analysis and creative problem-solving. Originality/value The work elaborates on important drivers of digital transformation from a decision-making perspective and discusses their practical implications for managers.


2021 ◽  
Vol 14 ◽  
pp. 1-7
Author(s):  
Kwan Hoong Ng ◽  
Jeannie Hsiu Ding Wong ◽  
Chai Hong Yeong ◽  
Hafiz Mohd Zin ◽  
Noriah Jamal

Medical physics is the application of physics principles and techniques in medicine. Medical physicists are actively applying their knowledge and skills in the prevention, diagnosis and treatment of diseases to improve health via research and clinical practice. In this paper, we present the roles of medical physicists in the three primary fields, namely, diagnostic imaging, radiotherapy and nuclear medicine.  Medical physicists have been playing a crucial role in the advancement of new technologies that have revolutionised medicine today. This includes the continuous development of medical imaging and radiotherapy techniques since the discovery of X-ray and radioactivity. The last decade has seen tremendous development in the field that allows for better diagnosis and targeted treatment of various diseases. In the era of big data and artificial intelligence, while medical physicists continue to ensure that the application of the technologies in medicine is optimal and safe, it is paramount for the profession to evolve and be equipped with new skills to continue to contribute to the advancement of medicine.


2020 ◽  
Vol 6 (2) ◽  
pp. 135-161
Author(s):  
Diego Alejandro Borbón Rodríguez ◽  
◽  
Luisa Fernanda Borbón Rodríguez ◽  
Jeniffer Laverde Pinzón

Advances in neurotechnologies and artificial intelligence have led to an innovative proposal to establish ethical and legal limits to the development of technologies: Human NeuroRights. In this sense, the article addresses, first, some advances in neurotechnologies and artificial intelligence, as well as their ethical implications. Second, the state of the art on the innovative proposal of Human NeuroRights is exposed, specifically, the proposal of the NeuroRights Initiative of Columbia University. Third, the proposal for the rights of free will and equitable access to augmentation technologies is critically analyzed to conclude that, although it is necessary to propose new regulations for neurotechnologies and artificial intelligence, the debate is still very premature as if to try to incorporate a new category of human rights that may be inconvenient or unnecessary. Finally, some considerations on how to regulate new technologies are explained and the conclusions of the work are presented.


2019 ◽  
Vol 7 (1) ◽  
pp. 82-85
Author(s):  
Geetha Swaminathan

In the 21st Century, the buzzword is often used in all fields is “Innovation". It is no wonder using Innovation in day to the conversation as well as striving for innovation execution at organisations in Information Technology (IT) sectors. When we need to talk about innovation in IT sectors in the fast-moving technology IT organisations, they are in a position in increasing its capability in its innovative product and services. There is a lot of benefits out of business innovations that are being reaped in IT companies; there are apparent disadvantages are also the outcome of them. It is quite common, despite all benefits and drawbacks, they are in apposition to survive in the global market. That becomes a great challenge to all IT organisations. In IT organisations which consist of departments such as Development, Testing, Consulting, Networking, Infrastructure, Process and having common platforms and legacy languages, Apart from that they are in the way of invading new technologies such as Digital, Mobile, IoT, Artificial Intelligence, Machine learning Cloud computing. In all the fields, as mentioned above and area, they need to do innovation to sustain their business. This paper will provide elaborate results on Pros and Cons of Business Innovation in IT Organization.


Sign in / Sign up

Export Citation Format

Share Document