scholarly journals Influence of the relative dimensions of the cavity on the conjugate convective heat transfer and on the shape of crystallization fronts in the method of Horizontal Directed Crystallization

2019 ◽  
Vol 196 ◽  
pp. 00034
Author(s):  
Stepan A. Kislitsyn

The process of water crystallization in rectangular cavities is numerically studied. The liquid being studied is water having an inverse temperature dependence of the density. Calculations were carried out with a suddenly cooled vertical wall of a rectangular cavity. The initial temperature of the melt is maintained on the opposite wall. The finite element method was used to solve a system of equations for the nonstationary free convection of a melt, taking into account the dependence of the density on temperature. The heat conduction equation in the solidified substance was also solved. The problems were solved in a conjugate formulation taking into account the release of the latent heat of crystallization at the liquid-solid interface.

2021 ◽  
Vol 2119 (1) ◽  
pp. 012161
Author(s):  
K. A. Mitin ◽  
V. S. Berdnikov ◽  
A. V. Mitina

Abstract Natural convective heat transfer in the system “monocrystalline tape – environment – walls of the growth vessel”, geometrically similar to the simplified scheme of the upper part of the heat node in the Stepanov method, is studied numerically by the finite element method in the conjugate formulation. The calculations were performed with a Prandtl number equal to 0.68 (argon), in the range of Grashof numbers 1000 ≤ Gr ≤ 25000 and with a discrete set of tape lengths in the range from 1 to 5.


Author(s):  
Mohammad M.Rahman

Numerical simulation is performed to explore the convective heat transfer characteristics of Fe3O4-H2O nanofluid contained in a right-angle triangular cavity considering three types of thermal boundary conditions at the bottom wall. No heat is allowed to escape through the insulated vertical wall, whereas the inclined wall is kept colder than the bottom one. A sloping magnetic field whose strength is unvarying acts upon the cavity. The physical model is converted to the mathematical form through coupled highly nonlinear partial differential equations. These equations are then transformed into the non-dimensional form with the help of a group of transformations of variables. A very robust pde solver COMSOL Multiphysics that uses the finite element method (FEM) of Galerkin type is applied to carry out the numerical calculation. Heat transfer escalation through middling Nusselt number at the lowermost cavity wall is explored for diverse model parameters and thermal circumstances. The outcomes lead us to conclude that a higher degree of heat transfer is accomplished by reducing the dimension of nanoparticles and aggregating the buoyancy force through the Rayleigh number. It is highest when there is a magnetic field leaning angle of 900 and the lowermost wall is heated homogenously.  


2021 ◽  
Author(s):  
Ehsanul Azim ◽  
Md. Jahid Hasan Sagor ◽  
Shadman Sakief Hridoy ◽  
Rafiqul Hasan ◽  
Ashrafur Rahman ◽  
...  

Abstract Conjugate pure mixed convection in a differentially heated square cavity with two vertically placed heat conductive revolving cylinders has been analyzed in computational approach applying the Finite Element Method. This analysis has been implemented considering the upper and lower wall as insulated simultaneously and the left vertical wall as heated maintaining constant temperature (i.e., isothermally heated) and the right vertical wall as isothermally cooled. The outcomes of this study have been examined concerning streamlines, isotherms, average Nusselt number (Nu) which unveils a noteworthy fact that both the rotating cylinders' inclination patterns and Reynolds number have a vital role upon the Nu, flow pattern, and isotherms. From that perspective, best heat transfer phenomena have been observed for counterclockwise circulation of both cylinders so that the condition for these cases has been assessed from a distance variation between the two cylinders maintaining a constant speed ratio (s). The best result has been specified for different speed ratios at different materials of the rotating cylinders.


Author(s):  
С.В. Бородкин ◽  
А.В. Иванов ◽  
И.Л. Батаронов ◽  
А.В. Кретинин

На основе уравнений теплопереноса в движущейся среде и соотношений теплопередачи в термоэлектрическом охладителе приведен сравнительный анализ методик расчета поля температуры в теплонапряженном элементе. Рассмотрены методики на основе: 1) теплового баланса, 2) среднего коэффициента теплоотдачи, 3) дифференциального коэффициента теплоотдачи, 4) прямого расчета в рамках метода конечных элементов. Установлено, что первые две методики не дают адекватного распределения поля температур, но могут быть полезны для определения принципиальной возможности заданного охлаждения с использованием термоэлектрических элементов. Последние две методики позволяют корректно рассчитать температурное поле, но для использования третьей методики необходим дифференциальный коэффициент теплоотдачи, который может быть найден из расчета по четвертой методике. Сделан вывод о необходимости комбинированного использования методик в общем случае. Методы теплового баланса и среднего коэффициента теплоотдачи позволяют определить принципиальную возможность использования термоэлектрического охлаждения конкретного теплонапряженного элемента (ТЭ). Реальные параметры системы охлаждения должны определяться в рамках комбинации методов дифференциального коэффициента теплоотдачи и конечных элементов (МКЭ). Первый из них позволяет определить теплонапряженные области и рассчитать параметры системы охлаждения, которые обеспечивают тепловую разгрузку этих областей. Второй метод используется для проведения численных экспериментов по определению коэффициента теплоотдачи реальной конструкции The article presents on the basis of the equations of heat transfer in a moving medium and the relations of heat transfer in a thermoelectric cooler, a comparative analysis of methods for calculating the temperature field in a heat-stressed element. We considered methods based on: 1) heat balance, 2) average heat transfer coefficient, 3) differential heat transfer coefficient, 4) direct calculation using the finite element method. We established that the first two methods do not provide an adequate distribution of the temperature field but can be useful for determining the principal possibility of a given cooling using thermoelectric elements. The last two methods allow us to correctly calculate the temperature field; but to use the third method, we need a differential heat transfer coefficient, which can be found from the calculation using the fourth method. We made a conclusion about the need for combined use of methods in a general case. The methods of thermal balance and average heat transfer coefficient allow us to determine the principal possibility of using thermoelectric cooling of a specific heat-stressed element. The actual parameters of the cooling system should be determined using a combination of the differential heat transfer coefficient and the finite element method. The first of them allows us to determine the heat-stressed areas and calculate the parameters of the cooling system that provide thermal discharge of these areas. The second method is used to perform numerical experiments to determine the heat transfer coefficient of a real structure


Author(s):  
В.С. РУБАН ◽  
В.И. АЛЕШИН ◽  
Д.С. БЕЗУГЛЫЙ

Рассмотрены уравнения баланса и концентрационных потоков, базирующихся на моделях, позволяющих анализировать одноименные модели реологии течения в канале шнека блока замеса тестомесильной машины. Анализ процесса транспортировки и замеса на основе одномерной модели выявил необходимость использования сигмоидальной функции коэффициента напоропроводности от давления. Переход от одномерных задач к многомерным задачам переноса связан с преобразованием систем уравнений к симметричному виду. Полученные системы уравнений после использования теоремы Грина могут быть решены методом конечных элементов. The balance equation and concentration flows based on the models which make it possible to analyze the eponymous models of flow rheology in the block screw channel in a dough mixing machine has been considered. The analysis of the transportation and batch process based on one-dimensional model proved the necessity to apply sigmoidal coefficient of pressure function. The transition from one-dimensional problems to multidimensional transport problems is associated with the transformation of systems of equations to a symmetric form. The resulting system of equations after using Green’s theorem can be solved by the finite element method.


Author(s):  
Xizhen Ma ◽  
Wen Fu ◽  
Haijun Jia ◽  
Peiyue Li ◽  
Jun Li

The non-condensable gas is used to keep the pressure stable in the steam-gas pressurizer. The processes of heat and mass transfer during steam condensation in the presence of non-condensable gas play an important role and the thermal hydraulic characteristics in the pressurizer is particularly complicated due to the non-condensable gas. The effects of non-condensable gas on the process of heat and mass transfer during steam condensation were experimental investigated. A steam condensation experimental system under high pressure and natural convection was built and nitrogen was chosen in the experiments. The steam and nitrogen were considered in thermal equilibrium and shared the same temperature in the vessel under natural convection. In the experiments, the factors, for instance, pressure, mass fraction of nitrogen, subcooling of wall and the distribution of nitrogen in the steam, had been taken into account. The rate of heat transfer of steam condensation on the vertical wall with nitrogen was obtained and the heat transfer coefficients were also calculated. The characteristics curve of heat and mass transfer during steam condensation with non-condensable gas under high pressure were obtained and an empirical correlation was introduced to calculated to heat transfer coefficient of steam condensation with nitrogen which the calculation results showed great agreement with the experimental data.


2016 ◽  
Vol 831 ◽  
pp. 83-91
Author(s):  
Lahoucine Belarche ◽  
Btissam Abourida

The three-dimensional numerical study of natural convection in a cubical enclosure, discretely heated, was carried out in this study. Two heating square sections, similar to the integrated electronic components, are placed on the vertical wall of the enclosure. The imposed heating fluxes vary sinusoidally with time, in phase and in opposition of phase. The temperature of the opposite vertical wall is maintained at a cold uniform temperature and the other walls are adiabatic. The governing equations are solved using Control volume method by SIMPLEC algorithm. The sections dimension ε = D / H and the Rayleigh number Ra were fixed respectively at 0,35 and 106. The average heat transfer and the maximum temperature on the active portions will be examined for a given set of the governing parameters, namely the amplitude of the variable temperatures a and their period τp. The obtained results show significant changes in terms of heat transfer, by proper choice of the heating mode and the governing parameters.


1995 ◽  
Vol 117 (4) ◽  
pp. 910-917 ◽  
Author(s):  
T. J. Heindel ◽  
F. P. Incropera ◽  
S. Ramadhyani

Three-dimensional numerical predictions and experimental data have been obtained for natural convection from a 3 × 3 array of discrete heat sources flush-mounted on one vertical wall of a rectangular cavity and cooled by the opposing wall. Predictions performed in a companion paper (Heindel et al., 1995a) revealed that three-dimensional edge effects are significant and that, with increasing Rayleigh number, flow and heat transfer become more uniform across each heater face. The three-dimensional predictions are in excellent agreement with the data of this study, whereas a two-dimensional model of the experimental geometry underpredicts average heat transfer by as much as 20 percent. Experimental row-averaged Nusselt numbers are well correlated with a Rayleigh number exponent of 0.25 for RaLz ≲ 1.2 × 108.


1984 ◽  
Vol 106 (3) ◽  
pp. 613-619 ◽  
Author(s):  
M. M. Razzaque ◽  
J. R. Howell ◽  
D. E. Klein

A numerical solution of the exact equations of coupled radiative/conductive heat transfer and temperature distribution inside a medium, and of the heat flux distribution at all the gray walls of a two-dimensional rectangular enclosure with the medium having uniform absorbing/emitting properties, using the finite element method, is presented. The medium can also have distributed energy sources. Comparison is made to the results of the P-3 approximation method.


Sign in / Sign up

Export Citation Format

Share Document