scholarly journals Calculation of athermal recombination corrected dpa cross sections for proton, deuteron and heavy-ion irradiations using the PHITS code

2020 ◽  
Vol 239 ◽  
pp. 20011
Author(s):  
Yosuke Iwamoto ◽  
Shin-ichiro Meigo

To provide the athermal recombination corrected dpa (arc-dpa) cross sections for proton, deuteron and heavy ion irradiations in the energy range from 1 MeV/u to 3 GeV/u., the defect production efficiencies for aluminium, copper and tungsten were implemented in the radiation damage model in PHITS. In general, the dpa cross section is large with increasing the number of protons of incident particle. For high-energy (around 1 GeV/u) proton and deuteron irradiation, the dpa cross section is close to that under 12C irradiation due to secondaries produced by the nuclear reaction. The ratio of arc-dpa cross section to the conventional Norgett-Robinson-Torrens dpa (NRT-dpa) cross section is around 0.2 with incident energies over 100 MeV for proton and deuteron irradiations. For the case of 12C and 48Ca, this ratio is ranged from 0.3 to 0.4 for incident beam energies below 3 GeV/u.

Ionization by protons in the energy range 100 to 450 keV has been investigated by means of the well-known parallel-plate condenser method. A uniform axial magnetic field enables slow ion collection to be carried out over a precisely determined path length at pressures low enough to ensure single collision conditions. The total cross-section for slow ion production cr+, and the total ionization cross-section have been determined for protons in hydrogen, helium , neon, argon and krypton. It is found that charge transfer is very small above about 200 keV so that cr+ ~ cr e . The ionization cross-section for all cases falls off as E -1 log E where E is the energy of relative motion. At the high-energy limit of the present measurements, the proton ionization cross-sections agree closely with electron ionization cross-sections for the same relative velocity of impact. The results are therefore in agreement with the general predictions of the Born approximation.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Roman N. Lee ◽  
Alexey A. Lyubyakin ◽  
Vyacheslav A. Stotsky

Abstract Using modern multiloop calculation methods, we derive the analytical expressions for the total cross sections of the processes e−γ →$$ {e}^{-}X\overline{X} $$ e − X X ¯ with X = μ, γ or e at arbitrary energies. For the first two processes our results are expressed via classical polylogarithms. The cross section of e−γ → e−e−e+ is represented as a one-fold integral of complete elliptic integral K and logarithms. Using our results, we calculate the threshold and high-energy asymptotics and compare them with available results.


2021 ◽  
Vol 22 (2) ◽  
pp. 647
Author(s):  
Jelena Vukalović ◽  
Jelena B. Maljković ◽  
Karoly Tökési ◽  
Branko Predojević ◽  
Bratislav P. Marinković

Electron interaction with methane molecule and accurate determination of its elastic cross-section is a demanding task for both experimental and theoretical standpoints and relevant for our better understanding of the processes in Earth’s and Solar outer planet atmospheres, the greenhouse effect or in plasma physics applications like vapor deposition, complex plasma-wall interactions and edge plasma regions of Tokamak. Methane can serve as a test molecule for advancing novel electron-molecule collision theories. We present a combined experimental and theoretical study of the elastic electron differential cross-section from methane molecule, as well as integral and momentum transfer cross-sections in the intermediate energy range (50–300 eV). The experimental setup, based on a crossed beam technique, comprising of an electron gun, a single capillary gas needle and detection system with a channeltron is used in the measurements. The absolute values for cross-sections are obtained by relative-flow method, using argon as a reference. Theoretical results are acquired using two approximations: simple sum of individual atomic cross-sections and the other with molecular effect taken into the account.


2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
E. Iancu ◽  
A. H. Mueller ◽  
D. N. Triantafyllopoulos ◽  
S. Y. Wei

Abstract Using the dipole picture for electron-nucleus deep inelastic scattering at small Bjorken x, we study the effects of gluon saturation in the nuclear target on the cross-section for SIDIS (single inclusive hadron, or jet, production). We argue that the sensitivity of this process to gluon saturation can be enhanced by tagging on a hadron (or jet) which carries a large fraction z ≃ 1 of the longitudinal momentum of the virtual photon. This opens the possibility to study gluon saturation in relatively hard processes, where the virtuality Q2 is (much) larger than the target saturation momentum $$ {Q}_s^2 $$ Q s 2 , but such that z(1 − z)Q2 ≲ $$ {Q}_s^2 $$ Q s 2 . Working in the limit z(1 − z)Q2 ≪ $$ {Q}_s^2 $$ Q s 2 , we predict new phenomena which would signal saturation in the SIDIS cross-section. For sufficiently low transverse momenta k⊥ ≪ Qs of the produced particle, the dominant contribution comes from elastic scattering in the black disk limit, which exposes the unintegrated quark distribution in the virtual photon. For larger momenta k⊥ ≳ Qs, inelastic collisions take the leading role. They explore gluon saturation via multiple scattering, leading to a Gaussian distribution in k⊥ centred around Qs. When z(1 − z)Q2 ≪ Q2, this results in a Cronin peak in the nuclear modification factor (the RpA ratio) at moderate values of x. With decreasing x, this peak is washed out by the high-energy evolution and replaced by nuclear suppression (RpA< 1) up to large momenta k⊥ ≫ Qs. Still for z(1 − z)Q2 ≪ $$ {Q}_s^2 $$ Q s 2 , we also compute SIDIS cross-sections integrated over k⊥. We find that both elastic and inelastic scattering are controlled by the black disk limit, so they yield similar contributions, of zeroth order in the QCD coupling.


1996 ◽  
Vol 74 (7-8) ◽  
pp. 505-508 ◽  
Author(s):  
R. M. Finch ◽  
Á. Kövér ◽  
M. Charlton ◽  
G. Laricchia

Differential cross sections for elastic scattering and ionization in positron–argon collisions as a function of energy (40–150 eV) are reported at 60°. Of particular interest is the energy range 55–60 eV, where earlier measurements by the Detroit group found a drop in the elastic-scattering cross section of a factor of 2. This structure has been tentatively attributed to a cross channel-coupling effect with an open inelastic-scattering channel, most likely ionization. Our results indicate that ionization remains an important channel over the same energy range and only begins to decrease at an energy above 60 eV.


2020 ◽  
Vol 27 ◽  
pp. 106
Author(s):  
Sotirios Chasapoglou ◽  
A. Tsantiri ◽  
A. Kalamara ◽  
M. Kokkoris ◽  
V. Michalopoulou ◽  
...  

The accurate knowledge of neutron-induced fission cross sections in actinides, is of great importance when it comes to the design of fast nuclear reactors, as well as accelerator driven systems. Specifically for the 232Th(n,f) case, the existing experimental datasets are quite discrepant in both the low and high energy MeV regions, thus leading to poor evaluations, a fact that in turn implies the need for more accurate measurements.In the present work, the total cross section of the 232Th(n,f) reaction has been measured relative to the 235U(n,f) and 238U(n,f) ones, at incident energies of 7.2, 8.4, 9.9 MeV and 14.8, 16.5, 17.8 MeV utilizing the 2H(d,n) and 3H(d,n) reactions respectively, which generally yield quasi-monoenergetic neutron beams. The experiments were performed at the 5.5 MV Tandem accelerator laboratory of N.C.S.R. “Demokritos”, using a Micromegas detector assembly and an ultra thin ThO2 target, especially prepared for fission measurements at n_ToF, CERN during its first phase of operations, using the painting technique. The masses of all actinide samples were determined via α-spectroscopy. The produced fission yields along with the results obtained from activation foils were studied in parallel, using both the NeusDesc [1] and MCNP5 [2] codes, taking into consideration competing nuclear reactions (e.g. deuteron break up), along with neutron elastic and inelastic scattering with the beam line, detector housing and experimental hall materials. Since the 232Th(n,f) reaction has a relatively low energy threshold and can thus be affected by parasitic neutrons originating from a variety of sources, the thorough characterization of the neutron flux impinging on the targets is a prerequisite for accurate cross-section measurements, especially in the absence of time-of-flight capabilities. Additional Monte-Carlo simulations were also performed coupling both GEF [3] and FLUKA [4] codes for the determination of the detection efficiency.


2008 ◽  
Vol 23 (27n30) ◽  
pp. 2313-2316 ◽  
Author(s):  
◽  
H. KANDA ◽  
N. CHIGA ◽  
Y. FUJII ◽  
K. FUTATSUKAWA ◽  
...  

The total cross sections for the π+π− photoproduction on the deuteron were measured in an energy range of 0.8 to 1.1 GeV. The obtained total cross section for the quasi-free π+π− photoproduction on the deuteron was about 60 % of those on the free proton. The cross section for Δ++Δ− photoproduction was derived from the non-quasi-free π+π− photoproduction events. It was smaller than the previous data.


2021 ◽  
Vol 1024 ◽  
pp. 95-101
Author(s):  
Yosuke Iwamoto ◽  
Makoto Yoshida ◽  
Hiroki Matsuda ◽  
Shin Ichiro Meigo ◽  
Daiki Satoh ◽  
...  

For validating the number of displacements per atom (dpa) for tungsten under high-energy proton irradiation, we measured displacement cross sections related to defect-induced electrical resistivity changes in a tungsten wire sample under irradiation with 389-MeV protons under 10 K. The Gifford–McMahon cryocooler was used to cool the sample using a conductive coolant via thermal conduction plates of oxygen-free high-conductivity copper and electrical insulation sheets of aluminum nitride ceramic. In this experiment, the displacement cross section was 1612 ± 371 b for tungsten at 389 MeV. A comparison of the experimental displacement cross sections of tungsten with the calculated results obtained using Norgett–Robinson–Torrens (NRT) dpa and athermal recombination-corrected (arc) dpa cross sections indicates that arc-dpa was in better agreement with the experimental data than NRT-dpa; this is similar to the displacement cross sections of copper. From the measurements of damage recovery of the accumulated defects in tungsten through isochronal annealing, which is related to the defect concentration of the sample, approximately 20% of the damage was recovered at 60 K. This trend was similar to those observed in other experimental results for reactor neutrons.


2020 ◽  
Vol 21 (18) ◽  
pp. 6947
Author(s):  
Filipe Costa ◽  
Ali Traoré-Dubuis ◽  
Lidia Álvarez ◽  
Ana I. Lozano ◽  
Xueguang Ren ◽  
...  

Electron scattering cross sections for pyridine in the energy range 0–100 eV, which we previously measured or calculated, have been critically compiled and complemented here with new measurements of electron energy loss spectra and double differential ionization cross sections. Experimental techniques employed in this study include a linear transmission apparatus and a reaction microscope system. To fulfill the transport model requirements, theoretical data have been recalculated within our independent atom model with screening corrected additivity rule and interference effects (IAM-SCAR) method for energies above 10 eV. In addition, results from the R-matrix and Schwinger multichannel with pseudopotential methods, for energies below 15 eV and 20 eV, respectively, are presented here. The reliability of this complete data set has been evaluated by comparing the simulated energy distribution of electrons transmitted through pyridine, with that observed in an electron-gas transmission experiment under magnetic confinement conditions. In addition, our representation of the angular distribution of the inelastically scattered electrons is discussed on the basis of the present double differential cross section experimental results.


1962 ◽  
Vol 40 (12) ◽  
pp. 1749-1764 ◽  
Author(s):  
Arie Van Wijngaarden ◽  
Henry E. Duckworth

Measurements are reported of the energy loss suffered by H1 and He4 particles, of 4- to 30-kev energy, in passing through thin films of carbon, aluminum oxide, and VYNS. Only those particles that emerged in the forward direction were studied. Evidence is presented for identifying the stopping cross sections per atom observed in this way with Se, the electronic component of the total stopping cross section per atom. It appears that the calculated energy dependence of [Formula: see text] is somewhat in error, and that the magnitudes of the Se's for He4 are systematically too small by 10–15%.


Sign in / Sign up

Export Citation Format

Share Document