scholarly journals Suitability of the Iraqi natural clay for the preparation of Al-Fe pillared-clays

2018 ◽  
Vol 162 ◽  
pp. 05017
Author(s):  
Faris Al-Ani ◽  
Ghayda Al-Kindi

Some organic pollutant in aqueous wastewater inhabitant biological treatment, catalyst wet air oxidation is a method to treat this waste. Al-Fe pillared Iraqi clays with different Fe content were prepared. Aluminum was mixed with iron in different molar ratio Fe/Al (1:9- 2:8- 3:7- 4-6- 5:5) for each regions. These clays collected from different location in Iraq (Anbar, Erbil, Mosel, Baghdad, and Basra), the results of some properties studied for natural and pillared clay, from X-Ray- Fluorescence (XRF) show that iron cation replaces some Ca in the clay, and from X-Ray Diffraction (XRD) show the Calcite types of Iraqi clays. constructs clusters of active ingredient which dramatically clear on the catalytic surface for all catalyst types show through photos of catalysts by Scanning Electron Microscopy (SEM), the best molar ratio of Fe/Al in which give strong interaction between Fe and Al in the pillared were (0.5-0.4-0.3-0.3 and 0.2) for (Mosul-Basra -Anbar-Baghdad and Erbil) respectively. This ratio gives high surface area, and pore size in mesopore. It is concluded that clay and silty clay (Mosul clay) consider the best catalyst due to higher activity and stability through experiment of CWAO in batch reactor, with operation condition 150°C, 2.5 Mpa, Ccat equal to 7 mg/l.

2018 ◽  
Vol 7 (4.20) ◽  
pp. 629
Author(s):  
Ghayda Yaseen AL Kindi ◽  
Faris Hammoodi AL Ani

The current paper studies the viability of using a Batch reactor, by five types of Al-Fe pillared clay that prepared from five regions in Iraq for phenol degradation in synthetic wastewater. The operation condition study through variables in (pH, pressure, temperature, pillared load, phenol load). The findings have illustrated that phenol degradation could be increase via incrementing temperature, pressure, pillared load and degrease in phenol load. Phenol good degradation proportion which was 97 %, has been achieved at optimum proportion (pH= 3.9, temperature = 150 °C, pressure = 3.5 MPa, in addition to phenol concentration = 500 mg/l). The two models power-law and Langmuir−Hinshelwood have been used   to study the catalytic kinetics of the phenol degradation. From results shown the activation energy for every response equivalent to (37114.014 j/mol) for Anbar (37795, 48783.9, 36628, 40785 j/mol) for Erbil, Mosul, Baghdad and Basra respectively. It was proved that the reaction in this study is under kinetics control.   


2018 ◽  
Vol 7 (4.20) ◽  
pp. 594
Author(s):  
Ghayda Yaseen AL Kindi ◽  
Faris Hammoodi AL Ani ◽  
. .

The current paper studies the viability of using a Batch reactor, by five types of Al-Fe pillared clay that prepared from five regions in Iraq for phenol degradation in synthetic wastewater. The operation condition study through variables in (pH, pressure, temperature, pillared load, phenol load). The findings have illustrated that phenol degradation could be increase via incrementing temperature, pressure, pillared load and degrease in phenol load. Phenol good degradation proportion which was 97 %, has been achieved at optimum proportion (pH= 3.9, temperature = 150 °C, pressure = 3.5 MPa, in addition to phenol concentration = 500 mg/l). The two models power-law and Langmuir−Hinshelwood have been used   to study the catalytic kinetics of the phenol degradation. From results shown the activation energy for every response equivalent to (37114.014 j/mol) for Anbar (37795, 48783.9, 36628, 40785 j/mol) for Erbil, Mosul, Baghdad and Basra respectively. It was proved that the reaction in this study is under kinetics control.  


DYNA ◽  
2019 ◽  
Vol 86 (209) ◽  
pp. 180-187
Author(s):  
Stephanie Alexa Ñústez Castaño ◽  
Duvan Oswaldo Villamizar Castro ◽  
Edgar Mauricio Vargas Solano

In this study, the catalytic activity of dolomite was evaluated for the transesterification of Colombian RBD palm oil with methanol, carried out in a batch reactor at 333,15K and 600rpm. The activated dolomites (calcined at 1073.15K for 2h) were characterized by scanning electron microscope (SEM), energy-dispersive X-ray spectroscopy (EDS), Fourier transform infrared spectroscopy (FTIR), Hammett indicators method, and quantification of the surface area, average pore size and average pore volume BET. The influence of reaction variables such as catalyst amount (%wt /wt) and methanol / palm oil molar ratio (mole/mole) was investigated. Under the suitable reaction conditions, the amount of calcined dolomite equal to 4% (wt /wt) based on the weight of oil, the methanol-oil molar ratio equal to 9:1, and the reaction time = 1h, the methyl ester content of 82.67% of fatty acid methyl esters (FAME) can be achieved.


2018 ◽  
Vol 55 (4C) ◽  
pp. 277 ◽  
Author(s):  
Nguyen Thi Phuong Mai

In the present paper, photocatalytic degradation of paraquat using N-TiO2/SiO2 with different molar ratio of titanium: nitrogen (Ti:N) under visible light was investigated. The catalyst was prepared via immersed SiO2 in N-TiO2. N-TiO2 was synthesized by sol-gel method.  The N-TiO2/SiO2 catalyst was characterized using X-ray diffraction, UV diffuse reflectance spectroscopy, scanning electron microscopy, energy dispersive X-ray spectroscopy. The results from characterizations indicated that N-doped anatase TiO2 had a 20-25 nm size. Degradation of paraquat, at an initial concentration of 10 mg/L was determined by UV-Vis. Chemical oxygen demand (COD) was used for process performance. Based on the COD tests, the COD values in residual paraquat was lower than that in initial paraquat concentration after 8 hours illumination of visible light. Moreover, the experiment’s results indicated that 80% of paraquat was degraded within 8 h of illumination time. These results showed that N-TiO2/SiO2 with molar Ti:N=2:1 gives the highest degradation efficiency of paraquat under visible light. This catalyst was stable and reusable suggesting it can be applied to treat organic pollutant in water. 


Membranes ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 785
Author(s):  
Fahad A. AlAbduljabbar ◽  
Sajjad Haider ◽  
Fekri Abdulraqeb Ahmed Ali ◽  
Abdulaziz A. Alghyamah ◽  
Waheed A. Almasry ◽  
...  

In this study, polyacrylonitrile (PAN_P) nanofibers (NFs) were fabricated by electrospinning. The PAN_P NFs membrane was functionalized with diethylenetriamine to prepare a functionalized polyacrylonitrile (PAN_F) NFs membrane. TiO2 nanoparticles (NPs) synthesized in the laboratory were anchored to the surface of the PAN_F NFs membrane by electrospray to prepare a TiO2 NPs coated NFs membrane (PAN_Coa). A second TiO2/PAN_P composite membrane (PAN_Co) was prepared by embedding TiO2 NPs into the PAN_P NFs by electrospinning. The membranes were characterized by microscopic, spectroscopic and X-ray techniques. Scanning electron micrographs (SEM) revealed smooth morphologies for PAN_P and PAN_F NFs membranes and a dense cloud of TiO2 NPs on the surface of PAN_Coa NFs membrane. The attenuated total reflectance in the infrared (ATR-IR) proved the addition of the new amine functionality to the chemical structure of PAN. Transmission electron microscope images (TEM) revealed spherical TiO2 NPs with sizes between 18 and 32 nm. X-ray powder diffraction (XRD) patterns and energy dispersive X-ray spectroscopy (EDX) confirmed the existence of the anatase phase of TiO2. Surface profilometry da-ta showed increased surface roughness for the PAN_F and PAN_Coa NFs membranes. The adsorption-desorption isotherms and hysteresis loops for all NFs membranes followed the IV -isotherm and the H3 -hysteresis loop, corresponding to mesoporous and slit pores, respectively. The photocatalytic activities of PAN_Coa and PAN_Co NFs membranes against methyl orange dye degradation were evaluated and compared with those of bare TiO2 NPs.The higher photocatalytic activity of PAN_Coa membrane (92%, 20 ppm) compared to (PAN_Co) NFs membrane (41.64%, 20 ppm) and bare TiO2 (49.60%, 20 ppm) was attributed to the synergy between adsorption, lower band gap, high surface roughness and surface area.


Catalysts ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 609 ◽  
Author(s):  
Vanesa Domínguez-Barroso ◽  
Concepción Herrera ◽  
María Ángeles Larrubia ◽  
Rafael González-Gil ◽  
Marina Cortés-Reyes ◽  
...  

The acetalization of glycerol with acetone represents a strategy for its valorization into solketal as a fuel additive component. Thus, acid carbon-based structured catalyst (SO3H-C) has been prepared, characterized and tested in this reaction. The structured catalyst (L = 5 cm, d = 1 cm) showed a high surface density of acidic sites (2.9 mmol H+ g−1) and a high surface area. This catalyst is highly active and stable in the solketal reaction production in a batch reactor system and in a continuous downflow reactor, where several parameters were studied such as the variation of time of reaction, temperature, acetone/glycerol molar ratio (A/G) and weight hourly space velocity (WHSV). A complete glycerol conversion and 100% of solketal selectivity were achieved working in the continuous flow reactor equipped with distillation equipment when WHSV is 2.9 h−1, A/G = 8 at 57 °C in a co-solvent free operation. The catalyst maintained its activity under continuous flow even after 300 min of reaction.


Nanomaterials ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 277 ◽  
Author(s):  
Hailong Lu ◽  
Lili Zhang ◽  
Jinxia Ma ◽  
Nur Alam ◽  
Xiaofan Zhou ◽  
...  

Metal–organic framework (MOF)-based derivatives are attracting increased interest in various research fields. In this study, nano-cellulose MOF-derived carbon-doped CuO/Fe3O4 nanocomposites were successfully synthesized via direct calcination of magnetic Cu-BTC MOF (HKUST-1)/Fe3O4/cellulose microfibril (CMF) composites in air. The morphology, structure, and porous properties of carbon-doped CuO/Fe3O4 nanocomposites were characterized using SEM, TEM, powder X-ray diffraction (PXRD), X-ray photoelectron spectroscopy (XPS), and vibrating sample magnetometry (VSM). The results show that the as-prepared nanocomposite catalyst is composed of Fe3O4, CuO, and carbon. Compared to the CuO/Fe3O4 catalyst from HKUST-1/Fe3O4 composite and CuO from HKUST-1, this carbon-doped CuO/Fe3O4 nanocomposite catalyst shows better catalytic efficiency in reduction reactions of 4-nitrophenol (4-NP), methylene blue (MB), and methyl orange (MO) in the presence of NaBH4. The enhanced catalytic performance of carbon-doped CuO/Fe3O4 is attributed to effects of carbon preventing the aggregation of CuO/Fe3O4 and providing high surface-to-volume ratio and chemical stability. Moreover, this nanocomposite catalyst is readily recoverable using an external magnet due to its superparamagnetic behavior. The recyclability/reuse of carbon-doped CuO/Fe3O4 was also investigated.


2018 ◽  
Author(s):  
Tasneem Siddiquee ◽  
Abdul Goni

Chemical treatment of CoX<sub>2</sub><b><sup>. </sup></b>6H<sub>2</sub>O (X = Cl, Br, I) with the potentially tridentate PNP pincer ligand 2,6-bis(di-<i>tert</i>-butylphosphinomethyl)pyridine in 1:1 molar ratio results in cobalt(II) halide-PNP pincer complexes. The effect of the hydrated metal source on molecular structure and geometry of the complexes was studied by single crystal X-ray diffraction analysis. The complexes are neutral and the cobalt center adopts a penta-coordinate system with potential atropisomerization. Within the unit cell there are two distinct molecules per asymmetric unit. One of the two phosphorus atoms in the PNP ligand was observed to be partially oxidized to phosphinoxide. Disorder in the structure reflects a mixture of square pyramidal and distorted tetrahedral geometry.


Author(s):  
Jiwei Zhang ◽  
Jingjing Xu ◽  
Shuaixia Liu ◽  
Baoxiang Gu ◽  
Feng Chen ◽  
...  

Background: Coal gangue was used as a catalyst in heterogeneous Fenton process for the degradation of azo dye and phenol. The influencing factors, such as solution pH gangue concentration and hydrogen peroxide dosage were investigated, and the reaction mechanism between coal gangue and hydrogen peroxide was also discussed. Methods: Experimental results showed that coal gangue has the ability to activate hydrogen peroxide to degrade environmental pollutants in aqueous solution. Under optimal conditions, after 60 minutes of treatment, more than 90.57% of reactive red dye was removed, and the removal efficiency of Chemical Oxygen Demand (COD) up to 72.83%. Results: Both hydroxyl radical and superoxide radical anion participated in the degradation of organic pollutant but hydroxyl radical predominated. Stability tests for coal gangue were also carried out via the continuous degradation experiment and ion leakage analysis. After five times continuous degradation, dye removal rate decreased slightly and the leached Fe was still at very low level (2.24-3.02 mg L-1). The results of Scanning Electron Microscope (SEM), energy dispersive X-Ray Spectrometer (EDS) and X-Ray Powder Diffraction (XRD) indicated that coal gangue catalyst is stable after five times continuous reuse. Conclusion: The progress in this research suggested that coal gangue is a potential nature catalyst for the efficient degradation of organic pollutant in water and wastewater via the Fenton reaction.


Catalysts ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1456
Author(s):  
Yujie Fu ◽  
You Zhang ◽  
Qi Xin ◽  
Zhong Zheng ◽  
Yu Zhang ◽  
...  

Chlorinated volatile organic compounds (CVOCs) are vital environmental concerns due to their low biodegradability and long-term persistence. Catalytic combustion technology is one of the more commonly used technologies for the treatment of CVOCs. Catalysts with high low-temperature activity, superior selectivity of non-toxic products, and resistance to chlorine poisoning are desirable. Here we adopted a plasma treatment method to synthesize a tin-doped titania loaded with ruthenium dioxide (RuO2) catalyst, possessing enhanced activity (T90%, the temperature at which 90% of dichloromethane (DCM) is decomposed, is 262 °C) compared to the catalyst prepared by the conventional calcination method. As revealed by transmission electron microscopy, X-ray diffraction, N2 adsorption, X-ray photoelectron spectroscopy, and hydrogen temperature-programmed reduction, the high surface area of the tin-doped titania catalyst and the enhanced dispersion and surface oxidation of RuO2 induced by plasma treatment were found to be the main factors determining excellent catalytic activities.


Sign in / Sign up

Export Citation Format

Share Document