scholarly journals Selected aspects of technological innovations management in district heating companies

2018 ◽  
Vol 183 ◽  
pp. 04003 ◽  
Author(s):  
Aleksandra Rak

The accession of Poland to the EU results in the realization of EU directives, including the field of energy efficiency and CO2 emissions. The regulations oblige enterprises that produce and distribute heat to technical activities involving the use of existing heat sources and modernization of thermal networks, as well as economic and environmental optimization of the heat supply process. The implementation of these projects requires a change in the way the energy sector is managed and thoroughly restructured by implementing and applying technological and product innovations. The article discusses the legal and environmental conditions of the heat market in Poland, the key challenges for the heating industry and selected innovations in heating companies regarding two areas: technical infrastructure and management of the heat production and transmission.

2019 ◽  
Vol 1 (1) ◽  
pp. 412-418
Author(s):  
Aleksandra Wrzalik ◽  
Matevž Obrecht

AbstractIn recent years heating in Poland has been transformed as a result of the priorities of the country's energy policy implemented within the European Union. The increase in energy security, the development of renewable energy sources and the fulfilment of legal and environmental requirements are very important. Exploitation of district heating systems should ensure reliable and safe heat supplies for industrial and municipal customers with high energy efficiency and reduction of environmental impact. The article discusses the conditions and directions of centralized heating systems development as well as technical and economic issues, which are important for the security of heat supply. The Author describes selected technological innovations used in the technical infrastructure for heat transfer and modern IT systems which are improving the management of heating systems. The article includes the results of simulation research with use of IT tools showing the impact of selected innovations on the improvement of network operation conditions. Directions of modernization of heating systems in the aspect of increasing energy efficiency and security of heat supply have also been indicted here.


Author(s):  
Tetiana Zheliuk

Introduction. One of the main directions of ensuring the sustainable development of the national economy and its regions is the reform of the energy sector, which can take place through the modernization or innovation of its components. An important component of these reforms is to provide the population with the environmentally friendly and socially safe thermal energy. At the present stage of management, the heat supply is the most costly branch of public utilities, which is supplemented by the problems of the inefficient fuel balance structure; worn-out infrastructure and low energy efficiency. This highlights the need to study the management of modernization of the heat supply system in the region in view of the declared vectors of the long-term development. Object of research is the process of managing the modernization of the heat supply system in the region. Subject of the research is a set of scientific approaches and practical mechanisms of modernization of the heat supply system of the region in the context of ensuring its sustainable development. Objective. The conceptual foundations of modernization of the heat supply system of the region in the context of its sustainable development through the introduction of the innovative technologies both in the management process and in the energy sector itself is substantiated in the paper. Methods. The following general scientific methods were used during the research process: system, structural analysis, grouping, when studying the structural elements and isolation of problems of development of the heat supply system of the region; historical analysis, when considering the scientific principles and institutional mechanism of modernization of the region’s heat supply system; comparative analysis in assessing the possibilities of the green transition of the heat supply system of the region and also when considering the features of the use of grant resources in the modernization of the heat supply system of the region; economic analysis in assessing the current state of the district heating system, etc. results. The essential determinants of the heat supply system of the region are analyzed, the objective need, organizational and economic mechanisms for managing the modernization of the heat supply, taking into account the need for the balanced development of the energy sector of the region are verified. The scientific novelty of the obtained results lies in the substantiation of the conceptual approaches to the management of modernization of the heat supply system of the region by innovating the forms and methods of managerial influence on the heat supply system of the region. The conclusion is made about the following effective approaches in managing the modernization of the district heating system: planning of the sustainable development of the energy sector, development of programs for modernization of the district heating, implementation of the infrastructure and soft projects, implementation of the international projects, motivation of households and entrepreneurship in the heat sector, participation in the grant requests, in state crediting programs, realization of the business projects in the field of production of environmentally friendly fuel; conducting an information campaign among the population and other key market players to raise the awareness of the energy efficiency financing mechanisms. The practical significance of the obtained results is that the developed recommendations will be used to improve the organizational and economic mechanism of management of the district heating system modernization and ensure its sustainable development.


2014 ◽  
Vol 638-640 ◽  
pp. 2101-2105
Author(s):  
Lin Hua Zhang ◽  
Dong Yang ◽  
Ting Ting Chen ◽  
Shou Jun Zhou ◽  
Ling Liu

In this paper, we shall first briefly introduce the hydraulic junction of three-sources branched heat-supply network and the related optimization method. It's difficult to guarantee that the system runs in optimal state and it increases energy consumption in the system. In view of this situation this paper proposes a method to find the optimal positions of hydraulic intersections based on analyzing a real heating system with three heat sources in Jining. The optimization objective is to minimize the electric power consumption of circulating water pumps in district heating system. Finally, optimization programs are designed and the optimized results verify the feasibility and validity of the method compared with conventional experience values.


2020 ◽  
pp. 81-97
Author(s):  
O Shelimanova ◽  
◽  
A. Kolienko ◽  

Ensuring optimal hydraulic and thermal regimes in district heating systems (DHS) in the regulation of heat supply is an important factor in improving the energy and economic efficiency of DHS. In addition, high efficiency of the HS system is a factor that can ensure the preservation of its vital functions. Solving the problem of increasing the energy efficiency of the heat supply system is a complex problem that requires changes at all stages of heat transformation: in the energy source, heating networks and subscriber heating systems of heat consumers. The purpose of this study is to identify the impact of heat dissipation control processes in district heating systems on their energy and economic efficiency, provide recommendations for improving control processes taking into account modern challenges and regulatory requirements, analyze heat dissipation temperature schedules and select the optimal temperature schedule. It is shown that the optimal is the combined quantitative and qualitative regulation of heat release, which should be carried out both at the energy source and at consumers. The paper considers the possibility of using combined control systems in the existing district heating systems of Ukrainian cities. It is shown that the achievement of high energy efficiency is possible only with the introduction of automatic individual heating points with weather control and pressure drop regulators at the inlet to the buildings in the subscriber heating systems. Calculations of the amount of heat consumption reduction of centralized heat supply systems with the introduction of optimal control systems are performed.


2020 ◽  
Vol 42 (4) ◽  
pp. 93-101
Author(s):  
T.A. Zheliezna ◽  
A.I. Bashtovyi

The aim of the work is to analyze possible ways of decarbonization of the EU heat supply sector. The task of the work is to identify the most promising areas and develop appropriate recommendations for Ukraine. The heat supply sector of the EU and Ukraine needs decarbonization, for which there is a big potential and different areas of implementation of relevant measures. In Europe, such a strategy is set out in the Roadmap for decarbonization of the EU heating sector until 2050, the main provisions of which are in line with objectives of the European Green Deal and the EU Strategy on Heating and Cooling. European experts have developed the concept of a smart energy system, which was taken into account when preparing the Roadmap for decarbonization of the EU heating sector until 2050. A number of carried out studies have shown that a smart energy system with 50% district heating integrated with other parts of the overall energy system is more efficient than a conventional energy system or the one based on decentralized heat supply, in terms of the possibility of using a high share of renewable energy. It is recommended for Ukraine to finalize the Concept of green energy transition until 2050, taking into account European approaches to the development of heating systems and the use of modern biofuels. It is also recommended to expand the current Concept of heat supply of Ukraine to the level of a strategy with an emphasis on the development of district heating systems, wide involvement of renewable energy sources and new technologies.


2018 ◽  
Vol 49 ◽  
pp. 00063
Author(s):  
Karolina Kurtz-Orecka ◽  
Wojciech Tuchowski

The article describes the innovative combination of the heat pump's operation with the heating network called as cHPNes. The heat pump's lower heat sources used so far are air, water or ground. Their efficiency is usually incoherent with the energy needs of recipients. In the period of the lowest temperatures of the source, we have the highest demand for heat in the supplied facility. A combination of the water heat pump and the heating network is aimed at increasing the energy efficiency (COP) of the heat source and indirectly increasing the participation of renewable energy in the energy balance of buildings. The essence of the new solution is the use of returning water in the heating network to supply the heat pump evaporator. The working medium temperature of the heating network on the return in the all-year cycle is stable and high, which allows further use of energy of the heating water on the return. These are the two main advantages of network water used as the lower heat source, allowing for stable and efficient operation of the heat pump with COP above 13. This solution is a response to the need to improve the energy efficiency of highly urbanized spaces.


2015 ◽  
Vol 725-726 ◽  
pp. 1285-1291
Author(s):  
Nikita Mironov ◽  
Daria Petrosova

District heating is widespread in Russia, but to improve the energy efficiency of heat supply current is the transition from district heating to modern individual heating substation (IHS) with automatic regulation of heat - more cost-effective heating system.This article provides a description of the automatic IHS, its advantages over the district heating and calculation of the economy of heat when it is installed. As a result, the calculation result is obtained, proving the feasibility of using such a system.


2020 ◽  
Vol 24 (1) ◽  
pp. 406-418
Author(s):  
Ieva Pakere ◽  
Dace Lauka ◽  
Kristiāna Dolge ◽  
Valdis Vitolins ◽  
Ilze Polikarpova ◽  
...  

AbstractDistrict heating (DH) has been highlighted as an important part in future carbon neutral energy supply. However, the performance of different DH systems varies a lot and the existing regulations do not always motivate DH companies to move toward more sustainable heat production. Therefore, this article presents novel methodology for Climate index determination which can be further used for the comparison of DH systems. The Climate index includes seven different indicators which show DH system performance according to energy efficiency, sustainability and environmental impact dimensions. The methodology is applied for 20 different DH systems operating in Latvia. The results show that the performance of 5 natural gas-based DH systems is below the determined climate benchmark.


2018 ◽  
Vol 11 (2) ◽  
pp. 117-125
Author(s):  
M. E. Orlov ◽  
M. M. Zamaleev ◽  
A. V. Kuz’min ◽  
V. I. Sharapov

The possibilities of increasing the efficiency of cogeneration turbines of CHP plants through the use of low-potential heat carriers for water heating in district heat supply systems and increasing the generation of CHP electricity are considered. The existing technologies of heating the makeup water of the district heating system upstream water treatment apparatuses do not always provide the required heating temperature and do not have the sufficient energy efficiency. The technologies of using the main condensate of the exhaust steam in the turbine to heat the feed water in additional heaters included in the system of regeneration of cogeneration turbines are developed. The use of these technologies contributes to increasing the flow rate and reducing the enthalpy of the steam of regenerative outlets of the turbine used to heat this condensate, and, therefore, increases the combined heat and power generation. In order to determine the industrial applicability of the proposed solutions, experimental studies of the regeneration systems of turbo-units under the conditions of Ulyanovsk СHPPs-1 have been carried out. Multiparameter data arrays on operation of turbine condensate-feed path have been collected, and regression equations have been obtained to calculate the main condensate flow temperatures depending on various factors. On the basis of experimental data there have been calculated the minimum and maximum flow rates of feed water that can be heated to the desired temperature in the surface heaters included in the regeneration system of the turbines, the flow graphs of the heated feed water are constructed depending on the temperature of the main condensate after the turbines. The fields of application of the proposed technological solutions in operating heat supply systems are defined. The evaluation of energy efficiency is carried out using the method of specific generation of CHP electricity and conventional fuel economy at the implementation of the proposed solutions is calculated.


Author(s):  
Davide Quaggiotto ◽  
Jacopo Vivian ◽  
Angelo Zarrella

AbstractDistrict heating and cooling networks are a key infrastructure to decarbonise the heating and cooling sector. Besides the design of new networks according to the principles of the 4th and 5th generation, operational aspects may significantly contribute to improve the efficiency of existing networks from both economic and environmental standpoints. This article is the second step of a work that aims to exploit the flexibility of existing networks and improve their economic and environmental performance, using the district heating network of Verona as a case study. In particular, the first part of the research demonstrated through numerical simulations that the thermal inertia of the water contained in the pipes can be used to shift the heat production of the generators over time by acting on the flow rate circulating in the network. This article shifts the focus from the heat distribution side to the heat supply. A model predictive control strategy was formulated as a MILP optimization problem to schedule the heat supply of the cogeneration plants, heat pump and gas boilers as a function of heat load, waste heat production and electricity price forecasts. Computer simulations of considered district heating network were carried out executing the optimization with a rolling-horizon scheme over two typical weeks. Results show that the proposed look-ahead control achieves a reduction in the operational costs of about 12.5% and 5.8%, respectively in a middle season and a winter representative week. Increasing the flexibility of the system with a centralized heat storage tank connected to the CHP and HP units, these percentage rise to respectively 20% and 6.3%. In the warmest periods, when the total installed power of the CHP and HP plants is sufficient to supply the entire heat demand during the peak, and the modulation of these plants has a higher impact, the cost reduction related to the additional thermal energy storage is more relevant.


Sign in / Sign up

Export Citation Format

Share Document