scholarly journals Modeling of the process of the extinguishing gas concentration changes in the protected compartment

2018 ◽  
Vol 247 ◽  
pp. 00041
Author(s):  
Przemysław Kubica ◽  
Sylwia Boroń

The article discusses the aspect of the fire safety of rooms protected by Fixed Gaseous Extinguishing System (FGE-system). On the basis of a literature study, including the analysis of design standards, it was claimed that analytical models of gas outflow from the compartment ignore some parameters that can affect the process of extinguishing gas concentration changes in time. Correct prediction of the gas flow process may affect the retention time value, which is an important determinant of the fire safety of rooms protected by FGE-system. The density of extinguishing gas was indicated as a parameter with a large potential for extending the retention time. It was noted that the density of gas depends on atmospheric conditions like temperature, pressure and humidity, which are omitted in the standard models. In the research part, the concentration distribution of nitrogen and nitrogen-argon mixtures were analyzed using three methods. Obtained experimental data were compared with analytical calculations using a standard model (model N) and a new proposed model extended by an impact of the atmospheric conditions (model PK). Model PK showed greater accuracy of determining the process of extinguishing gas concentration changes. The new proposed model might be a valuable tool for further analysis of gas flow through the room.

1998 ◽  
Vol 555 ◽  
Author(s):  
O. Knotek ◽  
E. Lugscheider ◽  
S. Bäarwulf ◽  
C. Barimani

AbstractThe tungsten and vanadium oxides are well known to be usable as solid lubricants at elevated temperatures. Such metal-oxides are interesting for tribological insets at atmospheric conditions because of their “oxidation stability”. This paper reports about investigations made to find stable process windows for the deposition of tungsten and vanadium oxides in a reactive d.c. mode by the MSIP-PVD-process. One focus of the study is on the metal oxide-phases generated in the MSIP-process under various conditions and their mechanical and metallographic properties. Coatings were deposited, developed and analyzed by standard testing methods such as SEM, microhardness (nanoindentation), XRD and scratch testing to characterize the mechanical and structural properties. Stable process windows will be presented for the reactive mode as well as the influence of different process parameters to the microstructure and the material properties. It will be shown that it is possible to deposit vanadium-oxides despite contamination effects in wide ranges by adapting the gas-flow. Process failure was determined at 15 - 18 % oxygen partial pressure for reactively deposited tungsten oxides.


2018 ◽  
Vol 176 ◽  
pp. 01019 ◽  
Author(s):  
Sachiyo Sugimoto ◽  
Ippei Asahi ◽  
Tatuso Shiina

When change of hydrogen(H2) gas concentration in a certain point is measured, non-contact measurement technology with high temporal and spatial resolution is necessary. In this study, H2 concentration in the small area of <1cm2 under the gas flow was measured by using a Raman lidar. Raman scattering light at the measurement point of 750mm ahead was detected by the Raman lidar. As a result, it was proved that the H2 concentration of more than 100ppm could be successfully measured.


Micromachines ◽  
2019 ◽  
Vol 10 (9) ◽  
pp. 581 ◽  
Author(s):  
Quan Zhang ◽  
Jianguo Zhao ◽  
Xin Shen ◽  
Qing Xiao ◽  
Jun Huang ◽  
...  

A novel decoupled XY compliant micro-positioning stage, based on a bridge-type amplification mechanism and parallelogram mechanisms, is designed in this paper. Analytical models of the bridge-type amplification mechanism and parallelogram mechanisms are developed by Castigliano’s second theorem and a Beam constrained model. The amplification ratio, input stiffness, and output stiffness of the stage are further derived, based on the proposed model. In order to verify the theoretical analysis, the finite element method (FEM) is used for simulation and modal analysis, and the simulation results indicate that the errors of the amplification ratio, input stiffness, and output stiffness of the stage between the proposed model and the FEM results are 2.34%, 3.87%, and 2.66%, respectively. Modal analysis results show that the fundamental natural frequency is 44 Hz, and the maximum error between the theoretical model and the FEM is less than 4%, which further validates the proposed modeling method. Finally, the prototype is fabricated to test the amplification ratio, cross-coupling error, and workspace. The experimental results demonstrate that the stage has a relatively large workspace, of 346.1 μm × 357.2 μm, with corresponding amplification ratios of 5.39 in the X-axis and 5.51 in the Y-axis, while the cross-coupling error is less than 1.5%.


Author(s):  
Yonal Kirsal

Virtualization of resources is a widely accepted technique to optimize resources in recent technologies. Virtualization allows users to execute their services on the same physical machine, keeping these services isolated from each other. This paper proposes the analytical models for performability evaluation of virtualized servers with dynamic resource utilization. The performance and avalability models are considered separately due to the behaviour of the proposed system. The well-known Markov Reward Model (MRM) is used for the solution of the analytical model considered together with an exact spectral expansion and product form solution. The dynamic resource utilization is employed to enhance the QoS of the proposed model which is another major issue in the performance characterization of virtulazilation. In this paper, the performability output parameters, such as mean queue length, mean response time and blocking probability are computed and presented for the proposed model. In addition, the performability results obtained from the analytical models are validated by the simulation (DES) results to show the accuracy and effectiveness of the proposed work. The results indicate the proposed modelling results show good agreement with DES and understand the factors are very important to improve the QoS.


2016 ◽  
Vol 2016 ◽  
pp. 1-15 ◽  
Author(s):  
Qichao Xue ◽  
Chunwei Zhang ◽  
Jian He ◽  
Guangping Zou ◽  
Jingcai Zhang

Based on the summary of existing pounding force analytical models, an updated pounding force analysis method is proposed by introducing viscoelastic constitutive model and contact mechanics method. Traditional Kelvin viscoelastic pounding force model can be expanded to 3-parameter linear viscoelastic model by separating classic pounding model parameters into geometry parameters and viscoelastic material parameters. Two existing pounding examples, the poundings of steel-to-steel and concrete-to-concrete, are recalculated by utilizing the proposed method. Afterwards, the calculation results are compared with other pounding force models. The results show certain accuracy in proposed model. The relative normalized errors of steel-to-steel and concrete-to-concrete experiments are 19.8% and 12.5%, respectively. Furthermore, a steel-to-polymer pounding example is calculated, and the application of the proposed method in vibration control analysis for pounding tuned mass damper (TMD) is simulated consequently. However, due to insufficient experiment details, the proposed model can only give a rough trend for both single pounding process and vibration control process. Regardless of the cheerful prospect, the study in this paper is only the first step of pounding force calculation. It still needs a more careful assessment of the model performance, especially in the presence of inelastic response.


Author(s):  
Branislav Jacimovic ◽  
Srbislav Genic ◽  
Nikola Jacimovic

Abstract During the sizing of the radiant zone in boilers and furnaces, the most often used method is the Lobo-Evans model. This method is based on the perfect mixing model for flue gas flow inside the fire box, which represents a conservative or pessimistic flow pattern. This paper presents a different, optimistic model which is based on the plug flow for flue gas flow which results in the largest possible heat duty. The proposed model is given in two distinct forms – integral and numerical. As shown in the paper, the integral model results in small deviations with respect to the numerical model and, as such, is well suited for the engineering practice. Paper also presents an engineering approach to the calculation of the conductive heat transfer through the membrane wall, which is shown to be sufficiently accurate and simple for engineering calculations.


2021 ◽  
Vol 143 (7) ◽  
Author(s):  
Piyush Pant ◽  
Dipankar Chatterjee ◽  
Sudip Kumar Samanta ◽  
Aditya Kumar Lohar

Abstract The work explores the powder transport process, using numerical simulation to address the dynamics of the powder flow in an in-house built multi-channel coaxial nozzle of a direct metal deposition (DMD) system. The fluid turbulence is handled by the standard k–ɛ and k–ω turbulence models, and the results are compared in order to predict their suitability. An image-based technique using CMOS camera is adopted to determine the powder flow characteristics. The model is validated with the in-house experimental results and verified available results in the literature. The findings of this work confirms the application of the k–ω model for powder gas flow investigations in blown powder additive manufacturing (AM) processes due to its better predictive capability. The proposed model will assist in simulating the direct metal deposition process.


Energies ◽  
2019 ◽  
Vol 12 (18) ◽  
pp. 3559 ◽  
Author(s):  
Jia ◽  
Tsau ◽  
Barati ◽  
Zhang

There exits a great challenge to evaluate the flow properties of tight porous media even at the core scale. A pulse-decay experiment is routinely used to measure the petrophysical properties of tight cores including permeability and porosity. In this study, 5 sets of pulse-decay experiments are performed on a tight heterogeneous core by flowing nitrogen in the forward and backward directions under different pressures under pore pressures approximately from 100 psi to 300 psi. Permeability values from history matching are from about 300 nD to 600 nD which shows a good linear relationship with the inverse of pore pressure. A preferential flow path is found even when the microcrack is absent. The preferential path causes different porosity values using differential initial upstream and downstream pressure. In addition, the porosity values calculated based on the forward and backward flow directions are also different, and the values are about 1.0% and 2.3%, respectively, which is the primary novelty of this study. The core heterogeneity effect significantly affects the very early stage of pressure responses in both the upstream and downstream but the permeability values are very close in the late-stage experiment. We proposed that that there are two reasons for the preferential flow path: the Joule–Thomson effect for non-ideal gas and the core heterogeneity effect. Based on the finding of this study, we suggest that very early pressure response in a pulse-decay experiment should be closely examined to identify the preferential flow path, and failure to identify the preferential flow path leads to significant porosity and permeability underestimation.


2009 ◽  
Vol 147-149 ◽  
pp. 131-136 ◽  
Author(s):  
Joanna Pawłat ◽  
Xue Feng Li ◽  
Tadashi Sugiyama ◽  
Takahiro Matsuo ◽  
Yurij Zimin ◽  
...  

As one of applications for Microstructured Optical Fiber, a new device for measurement of low gas concentration was designed. In the developed system the Photonic Bandgap Fiber (PBGF) was used as a gas cell. Proposed technique allowed reducing gas sample volume to 0.01 cc. The gas flow inside core of fiber was simulated and result was confirmed experimentally. During the experimental work several types of fibers of various parameters were specially designed, produced and used. Core diameters ranged from 10.9 μm to 700 μm. Various cutting techniques for fibers such as using the fiber cleaver, Focused Ion Beam and Cross Section Polisher were investigated.


Author(s):  
Long Liu ◽  
Xia Wen ◽  
Qian Xiong ◽  
Xiuzhen Ma

Abstract With energy shortages and increasing environmental problems, natural gas, as a clean energy, has the advantages of cheap price and large reserves and has become one of the main alternative fuels for marine diesel engines. For large bore natural gas engines, pre-chamber spark plug ignition can be used to increase engine efficiency. The engine mainly relies on the flame ejected from the pre-chamber to ignite the mixture of natural gas and air in the main combustion chamber. The ignition flame in the main combustion chamber is the main factor affecting the combustion process. Although the pre-chamber natural gas engines have been extensively studied, the characteristics of combustion in the pre-chamber and the development of ignition flame in the main combustion chamber have not been fully understood. In this study, a two-zone phenomenological combustion model of pre-chamber spark-ignition natural gas engines is established based on the exchange of mass and energy of the gas flow process in the pre-chamber and the main combustion chamber. The basic characteristics of the developed model are: a spherical flame surface is used to describe the combustion state in the pre-chamber, and according to the turbulent jet theory, the influence of turbulence on the state of the pilot flame is considered based on the Reynolds number. According to the phenomenological model, the time when the flame starts to be injected from the pre-chamber to the main combustion chamber, and the parameters such as the length of the pilot flame are analyzed. The model was verified by experimental data, and the results showed that the calculated values were in good agreement with the experimental values. It provides an effective tool for mastering the law of flame development and supporting the optimization of combustion efficiency.


Sign in / Sign up

Export Citation Format

Share Document