scholarly journals Peculiarities of Injection Molding Conducting Composites

2018 ◽  
Vol 248 ◽  
pp. 01006
Author(s):  
Yovial Mahyoedin ◽  
Jaafar Sahari ◽  
Andanastuti Mukhtar ◽  
Norhamidi Mohammad ◽  
Iqbal

The investigations in this study focused on the characteristic of feedstock in an effort to understand the mechanism of injection molded in composite material. A composite, which has 75% wt. filler, consist of graphite (G), carbon black (CB) and polypropylene copolymer (PP). Twin-screw co-rotating extruder used for mixing materials. The conductivity of the molded parts measured using a four-point probe test procedure. The results showed that the injection molding conducting composites, which aggregated into larger clusters, tended to disperse unevenly into the PP, resulting in fewer particle-particle contacts and, consequently, a lower-conductivity composite in some part of the molded.

2018 ◽  
Vol 248 ◽  
pp. 01007
Author(s):  
Yovial Mahyoedin ◽  
Jaafar Sahari ◽  
Andanastuti Mukhtar ◽  
Norhamidi Mohammad ◽  
Suryadimal

This study is to investigate the flowability of the injection molded conductive composite material containing filler content from 70 up to 80 wt% by using spiral mold. Several moulding compounds, containing polypropylene (PP) as a matrix and graphite (G) and carbon black (CB) as conductive fillers prepared by melt compounding using twin-screw extruder. Carbon black is added as much as 10% and 20% respectively, in order to improve the electrical conductivity of composite material. Results show that the flowability of injection molded conductive composite material decreases with decreasing graphite size and with increasing filler (graphite and carbon black) content. It was found that composites containing G with particle size distribution (≤100 μm) entirely exhibits a relatively higher flowability, in the range of 10.67–6.21 cm, compared to the small size (25-60 μm), in which flowability is in the range of 5.23–3.37 cm. An attempt to combine carbon black as second filler with the PP and G found that composites containing CB showed decreased flowability of the injection molded conductive composite material, especially when the electrical conductivity formed through the resin. Results indicate that the flowability of the injection molded conductive composite material is an important design parameter to fabricate cost-effective, large, or thin composite bipolar plates.


2018 ◽  
Vol 62 (3) ◽  
pp. 241-246 ◽  
Author(s):  
Dániel Török ◽  
József Gábor Kovács

In all fields of industry it is important to produce parts with good quality. Injection molded parts usually have to meet strict requirements technically and aesthetically. The aim of the measurements presented in our paper is to investigate the aesthetic appearance, such as surface color homogeneity, of injection molded parts. It depends on several factors, the raw material, the colorants, the injection molding machine and the processing parameters. In this project we investigated the effects of the injection molding machine on surface color homogeneity. We focused on injection molding screw tips and investigated five screw tips with different geometries. We produced flat specimens colored with a masterbatch and investigated color homogeneity. To evaluate the color homogeneity of the specimens, we used digital image analysis software developed by us. After that we measured the plastication rate and the melt temperature of the polymer melt because mixing depends on these factors. Our results showed that the screw tips (dynamic mixers) can improve surface color homogeneity but they cause an increase in melt temperature and a decrease in the plastication rate.


2011 ◽  
Vol 233-235 ◽  
pp. 3057-3063 ◽  
Author(s):  
Yovial Mahyoedin ◽  
Jaafar Sahari ◽  
Andanastuti Mukhtar ◽  
Norhamidi Mohammad

This investigation gives attention on the rheology characteristics of polymer composites based on graphite and carbon black as fillers for further processing using an injection molding machine. In such a high solid loading system, the particles exhibit a very strong tendency toward agglomeration. This rapidly increases the viscosity of the mixture and decreases moldability. The presence of agglomerates in the mixture in particular may result in defect within the microstructure in the final product, even though it is sometime necessary in electrical conductivity. Composite materials in this study are polypropylene (PP) as matrix, and graphite (G) and carbon black (CB) as fillers, with a varied composition according to the percentage weight (% wt) of CB. Twin screw co-rotating extruder was used for mixing materials in order to achieve the best homogeneity of this compound. The measurement results obtained using capillary rheometer equipment showed that the addition of CB to the mixture of PP/G increase the viscosity of the materials, increase the activation energy and generally reduce the fluidity of composite materials. The value of the mixture viscosity increases with increasing the number of CB, reducing the ability of materials to be formed (moldability). Material viscosity, activation energy, fluidity and moldability shows how suitable the compound material to be processed by using injection molding machine.


2013 ◽  
Vol 1 (1) ◽  
Author(s):  
Thomas Martens ◽  
M. Laine Mears

In the metal injection molding (MIM) process, fine metal powders are mixed with a binder and injected into molds, similar to plastic injection molding. After molding, the binder is removed from the part, and the compact is sintered to almost full density. Though able to create high-density parts of excellent dimensional control and surface finish, the MIM process is restricted in the size of part that can be produced, due to gravitational deformation during high-temperature sintering and maximum thickness requirements to remove the binding agents in the green state. Larger parts could be made by bonding the green parts to a substrate during sintering; however, a primary obstacle to this approach lies in the sinter shrinkage of the MIM part, which can be up to 20%, meaning that the MIM part shrinks during sintering, while the conventional substrate maintains its dimensions. This behavior would typically inhibit bonding and/or cause cracking and deformation of the MIM part. In this work, we present a structure of micro features molded onto the surface of the MIM part, which bonds, deforms, and allows for shrinkage while bonding to the substrate. The micro features tolerate plastic deformation to permit the shrinkage without causing cracks after the initial bonds are established. In a first series of tests, bond strengths of up to 80% of that of resistance welds have been achieved. This paper describes how the authors developed their proposed method of sinter bonding and how they accomplished effective sinter bonds between MIM parts and solid substrates.


Polymers ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1503 ◽  
Author(s):  
David Marset ◽  
Celia Dolza ◽  
Teodomiro Boronat ◽  
Nestor Montanes ◽  
Rafael Balart ◽  
...  

This works focuses on the development of environmentally friendly composites with a partially biobased polyamide 610 (PA610), containing 63% biobased content, and a natural inorganic filler at the nanoscale, namely, halloysite nanotubes (HNTs). PA610 composites containing 10, 20, and 30 wt% HNTs were obtained by melt extrusion in a twin screw co-rotating extruder. The resulting composites were injection-molded for further characterization. The obtained materials were characterized to obtain reliable data about their mechanical, thermal, and morphological properties. The effect of the HNTs wt% on these properties was evaluated. From a mechanical standpoint, the addition of 30 wt% HNTs gave an increase in tensile modulus of twice the initial value, thus verifying how this type of natural load provides increased stiffness on injection molded parts. The materials prepared with HNTs slightly improved the thermal stability, while a noticeable improvement on thermomechanical resistance over a wide temperature range was observed with increasing HNTs content. The obtained results indicate that high biobased content composites can be obtained with an engineering thermoplastic, i.e., PA610, and a natural inorganic nanotube-shaped filler, i.e., HNTs, with balanced mechanical properties and attractive behavior against high temperature.


Author(s):  
J. T. Neil ◽  
D. A. Norris

Hot pressed composites of Si3N4 containing 30% SiC whiskers have shown substantial improvements in strength and fracture toughness relative to monolithic silicon nitride. Injection molded samples made of this composite material distorted in a systematic manner during densification by hot isostatic pressing. Whisker orientation and aspect ratio measurements based on digitized SEM micrographs were used to evaluate microstructure with respect to injection molding direction. Results show definite orientation of whiskers during injection molding which can be related to the observed densification distortion.


2011 ◽  
Vol 291-294 ◽  
pp. 610-613
Author(s):  
Hong Lin Li ◽  
Zhi Xin Jia

With the improvement of accuracy requirements for industrial products, the precise injection molding is replacing the traditional injection molding quickly and widely. Many factors influence the quality of injection-molded parts greatly, such as the property of the plastics, mold structure and the manufacturing accuracy, injecting machine and the injecting process parameters. In this paper, the work is emphasized for the influence of mold structure on the quality of injection-molded parts. Eight portions of injection mold are analyzed, including the cavities and cores, the guide components, the runner system, the ejection system, the side-core pulling mechanism, the temperature balance system, the venting system and the supporting parts. The structural characteristics of the above eight portions are presented.


1972 ◽  
Vol 45 (5) ◽  
pp. 1403-1411 ◽  
Author(s):  
J. F. O'Mahoney

Abstract Earlier work with cis-l,4-poly(isoprene) suggested that low levels of sulfur and high levels of sulfenamide accelerator with high levels of secondary accelerator was an excellent method for curing injection molded stocks. However, subsequent experience showed that despite the benefits of reduced sulfur concentrations on reversion, increased sulfur, increased sulfenamide, and reduced secondary accelerator concentrations were necessary for adequate cure and safety. From that experience we explored further and found that, if the sulfenamide concentration is held constant at a higher level and the secondary accelerator concentration is increased as sulfur concentration is decreased, nearly equivalent hardness and modulus can be maintained throughout most cure conditions with no loss in safety and cure rate and much improvement in reversion resistance. Studies were made in a carbon black filled stock with N-cyclohexyl-2-benzothiazole sulfenamide (CBS), N-oxodiethylene-2-benzothiazole sulfenamide (DBS), and N-morpholinyl-2-benzothiazolyl disulfide (MBD) as primary accelerators and tetramethylthiuram monosulfide (TMTM) and tetramethylthiuram disulfide (TMTD) as secondary accelerators.


2012 ◽  
Vol 468-471 ◽  
pp. 1013-1016 ◽  
Author(s):  
Hua Qing Lai

Molding is one of the most versatile and important processes for manufacturing complex plastic parts. It is a method of fabricating plastic parts by utilizing a mold or cavity that has a shape and size similar to the part being produced. Molten polymer is injected into the cavity, resulting in the desired part upon solidification. The injection-molded parts typically have excellent dimensional tolerance and require almost no finishing and assembly operations. But new variations and emerging innovations of conventional injection molding have been continuously developed to offer special features and benefits that cannot be accomplished by the conventional injection molding process. This study aims to improving the life of stereolithography injection mold.


Polymers ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 4087
Author(s):  
Jiquan Li ◽  
Wenyong Liu ◽  
Xinxin Xia ◽  
Hangchao Zhou ◽  
Liting Jing ◽  
...  

A burn mark is a sort of serious surface defect on injection-molded parts. In some cases, it can be difficult to reduce the burn marks by traditional methods. In this study, external gas-assisted injection molding (EGAIM) was introduced to reduce the burn marks, as EGAIM has been reported to reduce the holding pressure. The parts with different severities of burn marks were produced by EGAIM and conventional injection molding (CIM) with the same molding parameters but different gas parameters. The burn marks were quantified by an image processing method and the quantitative method was introduced to discuss the influence of the gas parameters on burn marks. The results show that the burn marks can be eliminated by EGAIM without changing the structure of the part or the mold, and the severity of the burn marks changed from 4.98% with CIM to 0% with EGAIM. Additionally, the gas delay time is the most important gas parameter affecting the burn marks.


Sign in / Sign up

Export Citation Format

Share Document