scholarly journals Parameterized, numerical design of a two-wheel Curtis steam turbine for small scale WHR

2021 ◽  
Vol 345 ◽  
pp. 00031
Author(s):  
Philipp Streit ◽  
Andreas P. Weiß

In contrast to the current trend of converting waste heat into electricity in the small power range below 100 kWel by means of an ORC plant, the authors are pursuing the concept of a micro steam power plant equipped with a micro turbine. Water avoids many of the problems often associated with organic working fluids, such as flammability, toxicity, greenhouse gas effect and high fluid costs. However, water vapor makes turbine design more challenging. The physical reasons for this are repeated, and thereby it becomes clear why a velocity compounded two wheel Curtis turbine has been chosen. The used in-house 1D turbine design tool is briefly introduced. More focus is put on the shortcomings of the implemented 1D loss model and their negative impact on the current turbine design. Consequently, the authors continued actual turbine design by a parameterized approach in 3D CAD/CFD. This approach is explained, and finally, the CFD flow field and the performance maps of the designed turbine are discussed. The turbine is currently under construction and will be installed in 2022 in a waste heat recovery (WHR) plant in Nuremberg/Germany.

2017 ◽  
Vol 139 (8) ◽  
Author(s):  
Jianhui Qi ◽  
Thomas Reddell ◽  
Kan Qin ◽  
Kamel Hooman ◽  
Ingo H. J. Jahn

Supercritical CO2 (sCO2) cycles are considered as a promising technology for next generation concentrated solar thermal, waste heat recovery, and nuclear applications. Particularly at small scale, where radial inflow turbines can be employed, using sCO2 results in both system advantages and simplifications of the turbine design, leading to improved performance and cost reductions. This paper aims to provide new insight toward the design of radial turbines for operation with sCO2 in the 100–200 kW range. The quasi-one-dimensional mean-line design code topgen is enhanced to explore and map the radial turbine design space. This mapping process over a state space defined by head and flow coefficients allows the selection of an optimum turbine design, while balancing performance and geometrical constraints. By considering three operating points with varying power levels and rotor speeds, the effect of these on feasible design space and performance is explored. This provides new insight toward the key geometric features and operational constraints that limit the design space as well as scaling effects. Finally, review of the loss break-down of the designs elucidates the importance of the respective loss mechanisms. Similarly, it allows the identification of design directions that lead to improved performance. Overall, this work has shown that turbine design with efficiencies in the range of 78–82% is possible in this power range and provides insight into the design space that allows the selection of optimum designs.


Energy ◽  
2019 ◽  
Vol 181 ◽  
pp. 51-55 ◽  
Author(s):  
A.P. Weiß ◽  
T. Popp ◽  
G. Zinn ◽  
M. Preißinger ◽  
D. Brüggemann

2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Md Al Mahadi Hasan ◽  
Yuanhao Wang ◽  
Chris R. Bowen ◽  
Ya Yang

AbstractThe development of a nation is deeply related to its energy consumption. 2D nanomaterials have become a spotlight for energy harvesting applications from the small-scale of low-power electronics to a large-scale for industry-level applications, such as self-powered sensor devices, environmental monitoring, and large-scale power generation. Scientists from around the world are working to utilize their engrossing properties to overcome the challenges in material selection and fabrication technologies for compact energy scavenging devices to replace batteries and traditional power sources. In this review, the variety of techniques for scavenging energies from sustainable sources such as solar, air, waste heat, and surrounding mechanical forces are discussed that exploit the fascinating properties of 2D nanomaterials. In addition, practical applications of these fabricated power generating devices and their performance as an alternative to conventional power supplies are discussed with the future pertinence to solve the energy problems in various fields and applications.


2021 ◽  
Vol 13 (10) ◽  
pp. 5494
Author(s):  
Lucie Kucíková ◽  
Michal Šejnoha ◽  
Tomáš Janda ◽  
Jan Sýkora ◽  
Pavel Padevět ◽  
...  

Heating wood to high temperature changes either temporarily or permanently its physical properties. This issue is addressed in the present contribution by examining the effect of high temperature on residual mechanical properties of spruce wood, grounding on the results of full-scale fire tests performed on GLT beams. Given these tests, a computational model was developed to provide through-thickness temperature profiles allowing for the estimation of a charring depth on the one hand and on the other hand assigning a particular temperature to each specimen used subsequently in small-scale tensile tests. The measured Young’s moduli and tensile strengths were accompanied by the results from three-point bending test carried out on two groups of beams exposed to fire of a variable duration and differing in the width of the cross-section, b=100 mm (Group 1) and b=160 mm (Group 2). As expected, increasing the fire duration and reducing the initial beam cross-section reduces the residual bending strength. A negative impact of high temperature on residual strength has also been observed from simple tensile tests, although limited to a very narrow layer adjacent to the charring front not even exceeding a typically adopted value of the zero-strength layer d0=7 mm. On the contrary, the impact on stiffness is relatively mild supporting the thermal recovery property of wood.


Author(s):  
Richard L. Hack ◽  
Max R. Venaas ◽  
Vince G. McDonell ◽  
Tod M. Kaneko

Small scale Distributed Generation with waste heat recovery (<50 kW power output, micro-DG/CHP) is an expanding market supporting the widespread deployment of on-site generation to much larger numbers of facilities. The benefits of increased overall thermal efficiency, reduced pollutant emissions, and grid/microgrid support provided by DG/CHP can be maximized with greater quantities of smaller systems that better match the electric and thermal on-site loads. The 3-year CEC funded program to develop a natural gas fueled automotive based rotary engine for micro-DG/CHP, capitalizing upon the unique attributes engine configuration will be presented including initial performance results and plans for the balance of the program.


2021 ◽  
Author(s):  
Isam M. Arafa ◽  
Mazin Y. Shatnawi ◽  
Yousef N. Obeidallah ◽  
Ahmed K. Hijazi ◽  
Yaser A . Yousef

Abstract Four transition metal borohydrides (MTBHs, MT = Ni, Fe, Co, and Cu) were prepared by sonicating a mixture of the desired MT salt with excess NaBH4 in a nonaqueous DMF/CH3OH media. The process afforded bimetallic (Ni-BH4), trimetallic (Fe-BH4, Co-BH4), and mixed-valence (Cu-H, Cu-BH4) amorphous, ferromagnetic nanoparticles as identified by thermal, ATR-IR, X-Ray diffraction, and magnetic susceptibility techniques. The electrical conductivity (σ) of cold-pressed discs of these MTBHs shows a nonlinear increase while their thermal conductivity (κ) decreases in the temperature range of 303 ≤ T ≤ 373 K. The thermal energy transport occurs through phonon lattice dynamics rather than electronic. The σ/κ ratio shows a nonlinear steep increase from 9.4 to 270 KV-2 in Ni-BH4, while a moderate-weak increase is observed for Fe-BH4, Co-BH4, and Cu-BH4. Accordingly, the corresponding thermoelectric (TE) parameters S, PF, ZT, and η were evaluated. All TE data shows that the bimetallic Ni-BH4 (S, 80 μVK-1; PF, 259 μWm-1K-2; ZT 0.64; η, 2.56%) is a better TE semiconductor than the other three MT-BHs investigated in this study. Our findings show that Ni-BH4 is a promising candidate to exploit low-temperature waste heat from body heat, sunshine, and small domestic devices for small-scale TE applications.


Author(s):  
C. P. Lea˜o ◽  
S. F. C. F. Teixeira ◽  
A. M. Silva ◽  
M. L. Nunes ◽  
L. A. S. B. Martins

In recent years, gas-turbine engines have undergone major improvements both in efficiency and cost reductions. Several inexpensive models are available in the range of 30 to 250 kWe, with electrical efficiencies already approaching 30%, due to the use of a basic air-compressor associated to an internal air pre-heater. Gas-turbine engines offer significant advantages over Diesel or IC engines, particularly when Natural Gas (NG) is used as fuel. With the current market trends toward Distributed Generation (DG) and the increased substitution of boilers by NG-fuelled cogeneration installations for CO2 emissions reduction, small-scale gas turbine units can be the ideal solution for energy systems located in urban areas. A numerical optimization method was applied to a small-scale unit delivering 100 kW of power and 0.86 kg/s of water, heated from 318 to 353K. In this academic study, the unit is based on a micro gas-turbine and includes an internal pre-heater, typical of these low pressure-ratio turbines, and an external heat recovery system. The problem was formulated as a non-linear optimisation model with the minimisation of costs subject to the physical and thermodynamic constraints. Despite difficulties in obtaining data for some of the components cost-equations, the preliminary results indicate that the optimal compressor pressure ratio is about half of the usual values found in large installations, but higher than those of the currently available micro-turbine models, while the turbine inlet temperature remains virtually unchanged.


2019 ◽  
Vol 141 (11) ◽  
Author(s):  
Eliott Guenat ◽  
Jürg Schiffmann

Abstract High-speed small-scale turbomachinery for waste heat recovery and vapor compression cycles is typically supported on gas-lubricated bearings operating close to the saturation conditions of the lubricant. Under particular conditions, the gas film might locally reach the saturation pressure with potentially hazardous effects on the performance of the gas bearing. The present work introduces a model based on the Reynolds equation and the development of cavitation modeling in liquid-lubricated bearings for condensing gas bearings. The effect of condensation on load capacity and pressure and density profiles is investigated for two one-dimensional bearing geometries (parabolic and Rayleigh step) and varying operating conditions. The results suggest that the load capacity is generally negatively affected if condensation occurs. An experimental setup consisting of a Rayleigh-step gas journal bearing with pressure taps to measure the local fluid film pressure is presented and operated in R245fa in near-saturated conditions. The comparison between the evolution of the fluid film pressure under perfect gas and near saturation conditions clearly suggests the occurrence of condensation in the fluid film. These results are corroborated by the very good agreement with the model prediction.


2018 ◽  
Vol 8 (11) ◽  
pp. 2083 ◽  
Author(s):  
Magdalena Muradin ◽  
Katarzyna Joachimiak-Lechman ◽  
Zenon Foltynowicz

Implementation of the circular economy is one of the priorities of the European Union, and energy efficiency is one of its pillars. This article discusses an effective use of agri-food industry waste for the purposes of waste-to-energy in biogas plants. Its basic objective is the comparative assessment of the eco-efficiency of biogas production depending on the type of feedstock used, its transport and possibility to use generated heat. The environmental impact of the analysed installations was assessed with the application of the Life Cycle Assessment (LCA) methodology. Cost calculation was performed using the Levelized Cost of Electricity (LCOE) method. The LCA analysis indicated that a biogas plant with a lower level of waste heat use where substrates were delivered by wheeled transport has a negative impact on the environment. The structure of distributed energy production cost indicates a substantial share of feedstock supply costs in the total value of the LCOE ratio. Thus, the factor affecting the achievement of high eco-efficiency is the location of a biogas plant in the vicinity of an agri-food processing plant, from which the basic feedstock for biogas production is supplied with the transmission pipeline, whereas heat is transferred for the needs of production processes in a processing plant or farm.


Sign in / Sign up

Export Citation Format

Share Document