scholarly journals Experimental investigation into characterization and machining of Al + SiCp nano-composites using coated carbide tool

2020 ◽  
Vol 21 (3) ◽  
pp. 307 ◽  
Author(s):  
Pradyut Kumar Swain ◽  
Kasinath Das Mohapatra ◽  
Ratnakar Das ◽  
Ashok Kumar Sahoo ◽  
Amlana Panda

The current research paper discusses the characterization and machining (turning) operation of aluminium (Al) and silicon carbide nano particle (SiCp) nano composite. The paper reveals proper distribution of silicon carbide nano particles (25nm) with aluminium metal matrix. Initially, tensile test has been carried on metal matrix nano composite to study its different properties. It was noticed that the properties of Al-SiCp increases by increasing the weight percentage of SiCp. Viker hardness test has also been conducted to find out the hardness of metal matrix nano composites. Different techniques i.e. Optical microscopy EDX-Analysis were utilized to find out various ingredients of the nano-composite material. The experimental study was carried out using Taguchi L16 orthogonal array by taking three different factors at four different levels each. The response parameters i.e. flank wear of coated carbide insert and surface roughness of Al-SiCp has been optimized by using Principal Component Analysis (PCA). Various graphs like main effect plot and normal probability plot have been plotted and studied properly. Different optical images of coated insert carbide tools (Insert CNMG 12040822TN 6010) at different runs were conducted to visualize the effects of process and response parameters. From the ANOVA table, it was found that cutting speed as well as depth of cut are found to the most vital parameters in influencing the responses for VBc and depth of cut and feed are found to the most significant parameters in influencing the responses for Ra.

2015 ◽  
Vol 787 ◽  
pp. 643-647
Author(s):  
M. Vignesh ◽  
K. Venkatesan ◽  
R. Ramanujam ◽  
Sundaravel Vijayan

Metal matrix composites (MMC) are the combination of base metal matrix and reinforcing materials like SiC, Al2O3, etc. The present research is focused on the machinability studies of Al 6061 reinforced with 10% wtof Al2O3 particles using multi layered coated carbide inserts. Fabricated samples by stir casting route were turned by the most variable factors, cutting speed, depth of cutand by a constant feed rate of 0.206 mm/rev. Surface roughness and tool wear are considered asoutput. Experiments are conducted by varying the cutting speed while keeping feed rate and depth of cut as constant. After the optimum cutting speed was determined, the depth of cut is varied by keeping the cutting speedand feed rateas constant.Based on the optimum cutting speed (150 m/min), depth of cut (1.2 mm) and feed rate (0.206 mm/rev), a long run test was carried out to find out the tool life and surface finish. But due to the softness nature built up edge formation is obtained. At the optimal parametric combination, the built up edge obtained is less than 2 mm for a machining time of 425 s


2016 ◽  
Vol 686 ◽  
pp. 149-154
Author(s):  
István Szalóki ◽  
Sándor Sipos ◽  
Zsolt János Viharos

Cutting of metal matrix composites (MMCs) has been considerably difficult due to the extremely abrasive nature of the reinforcements causing rapid tool wear and high machining cost. In this experimental study, three aluminium-based metal matrix composites (MMCs) were produced using a high pressure infiltration. Machining tests were carried out by face milling on the MMCs using coated carbide (HM) cutting tool at various values of feed rate, width of cut and depth of cut, under a constant cutting speed. The effect of the varied parameters on the surface roughness was investigated. The obtained results indicate that the Rz and Rp parameters are more capable to describe the influence of the milling parameters on the surface quality.


2012 ◽  
Vol 576 ◽  
pp. 60-63 ◽  
Author(s):  
N.A.H. Jasni ◽  
Mohd Amri Lajis

Hard milling of hardened steel has wide application in mould and die industries. However, milling induced surface finish has received little attention. An experimental investigation is conducted to comprehensively characterize the surface roughness of AISI D2 hardened steel (58-62 HRC) in end milling operation using TiAlN/AlCrN multilayer coated carbide. Surface roughness (Ra) was examined at different cutting speed (v) and radial depth of cut (dr) while the measurement was taken in feed speed, Vf and cutting speed, Vc directions. The experimental results show that the milled surface is anisotropic in nature. Surface roughness values in feed speed direction do not appear to correspond to any definite pattern in relation to cutting speed, while it increases with radial depth-of-cut within the range 0.13-0.24 µm. In cutting speed direction, surface roughness value decreases in the high speed range, while it increases in the high radial depth of cut. Radial depth of cut is the most influencing parameter in surface roughness followed by cutting speed.


Author(s):  
D. S. Sai Ravi Kiran ◽  
Alavilli Sai Apparao ◽  
Vempala GowriSankar ◽  
Shaik Faheem ◽  
Sheik Abdul Mateen ◽  
...  

This paper investigates the machinability characteristics of end milling operation to yield minimum tool wear with the maximum material removal rate using RSM. Twenty-seven experimental runs based on Box-Behnken Design of Response Surface Methodology (RSM) were performed by varying the parameters of spindle speed, feed and depth of cut in different weight percentage of reinforcements such as Silicon Carbide (SiC-5%, 10%,15%) and Alumina (Al2O3-5%) in alluminium 7075 metal matrix. Grey relational analysis was used to solve the multi-response optimization problem by changing the weightages for different responses as per the process requirements of quality or productivity. Optimal parameter settings obtained were verified through confirmatory experiments. Analysis of variance was performed to obtain the contribution of each parameter on the machinability characteristics. The result shows that spindle speed and weight percentage of SiC are the most significant factors which affect the machinability characteristics of hybrid composites. An appropriate selection of the input parameters such as spindle speed of 1000 rpm, feed of 0.02 mm/rev, depth of cut of 1 mm and 5% of SiC produce best tool wear outcome and a spindle speed of 1838 rpm, feed of 0.04 mm/rev, depth of cut of 1.81 mm and 6.81 % of SiC for material removal rate.


2015 ◽  
Vol 1089 ◽  
pp. 373-376
Author(s):  
Xing Wei Zheng ◽  
Guo Fu Ying ◽  
Yan Chen ◽  
Yu Can Fu

An experiment of face milling of Invar36 was conducted by using coated carbide insert, the microhardness was tested and the metallographic structure was observed to figure out the principles of work-hardening. The results showed that the depth of work-hardening ranges from 80μm to 160μm among the parameters selected in the experiments. The degree and the depth of work-hardening were significantly affected by the axial depth of cut and feed per tooth. The degree and the depth of work-hardening showed a tendency to increase with the increase of the axial depth of cut and feed per tooth. Compared with the axial depth of cut and feed per tooth, cutting speed had less influence on the degree and depth of work-hardening. The degree and depth of work- hardening decreased slowly with the increase of cutting speed. Metallographic observation showed that work-hardening layer consisted of the thermal force influenced layer and the force influenced layer, while the amorphous metallographic structure was observed in the thermal force influenced layer, and lattice distortion was observed in the force influenced layer.


2014 ◽  
Vol 14 (3) ◽  
pp. 171-175 ◽  
Author(s):  
Yashvir Singh ◽  
Amneesh Singla ◽  
Ajay Kumar

AbstractThis paper presents a statistical analysis of process parameters for surface roughness in drilling of Al/Al2O3p metal matrix composite. The experimental studies were conducted under varying spindle speed, feed rate, point angle of drill. The settings of drilling parameters were determined by using Taguchi experimental design method. The level of importance of the drilling parameters is determined by using analysis of variance. The optimum drilling parameter combination was obtained by using the analysis of signal-to-noise ratio. Through statistical analysis of response variables and signal-to-noise ratios, the determined significant factors are depth of cut and drill point angle with the contributions of 87% and 12% respectively, whereas the cutting speed is insignificant contributing by 1% only. Confirmation tests verified that the selected optimal combination of process parameter through Taguchi design was able to achieve desired surface roughness.


Metals ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 1338
Author(s):  
Lakshmanan Selvam ◽  
Pradeep Kumar Murugesan ◽  
Dhananchezian Mani ◽  
Yuvaraj Natarajan

Over the past decade, the focus of the metal cutting industry has been on the improvement of tool life for achieving higher productivity and better finish. Researchers are attempting to reduce tool failure in several ways such as modified coating characteristics of a cutting tool, conventional coolant, cryogenic coolant, and cryogenic treated insert. In this study, a single layer coating was made on cutting carbide inserts with newly determined thickness. Coating thickness, presence of coating materials, and coated insert hardness were observed. This investigation also dealt with the effect of machining parameters on the cutting force, surface finish, and tool wear when turning Ti-6Al-4V alloy without coating and Physical Vapor Deposition (PVD)-AlCrN coated carbide cutting inserts under cryogenic conditions. The experimental results showed that AlCrN-based coated tools with cryogenic conditions developed reduced tool wear and surface roughness on the machined surface, and cutting force reductions were observed when a comparison was made with the uncoated carbide insert. The best optimal parameters of a cutting speed (Vc) of 215 m/min, feed rate (f) of 0.102 mm/rev, and depth of cut (doc) of 0.5 mm are recommended for turning titanium alloy using the multi-response TOPSIS technique.


Author(s):  
Brian Boswell ◽  
Mohammad Nazrul Islam ◽  
Ian J Davies ◽  
Alokesh Pramanik

The machining of aerospace materials, such as metal matrix composites, introduces an additional challenge compared with traditional machining operations because of the presence of a reinforcement phase (e.g. ceramic particles or whiskers). This reinforcement phase decreases the thermal conductivity of the workpiece, thus, increasing the tool interface temperature and, consequently, reducing the tool life. Determining the optimum machining parameters is vital to maximising tool life and producing parts with the desired quality. By measuring the surface finish, the authors investigated the influence that the three major cutting parameters (cutting speed (50–150 m/min), feed rate (0.10–0.30 mm/rev) and depth of cut (1.0–2.0 mm)) have on tool life. End milling of a boron carbide particle-reinforced aluminium alloy was conducted under dry cutting conditions. The main result showed that contrary to the expectations for traditional machined alloys, the surface finish of the metal matrix composite examined in this work generally improved with increasing feed rate. The resulting surface roughness (arithmetic average) varied between 1.15 and 5.64 μm, with the minimum surface roughness achieved with the machining conditions of a cutting speed of 100 m/min, feed rate of 0.30 mm/rev and depth of cut of 1.0 mm. Another important result was the presence of surface microcracks in all specimens examined by electron microscopy irrespective of the machining condition or surface roughness.


2013 ◽  
Vol 589-590 ◽  
pp. 76-81
Author(s):  
Fu Zeng Wang ◽  
Jun Zhao ◽  
An Hai Li ◽  
Jia Bang Zhao

In this paper, high speed milling experiments on Ti6Al4V were conducted with coated carbide inserts under a wide range of cutting conditions. The effects of cutting speed, feed rate and radial depth of cut on the cutting forces, chip morphologies as well as surface roughness were investigated. The results indicated that the cutting speed 200m/min could be considered as a critical value at which both relatively low cutting forces and good surface quality can be obtained at the same time. When the cutting speed exceeds 200m/min, the cutting forces increase rapidly and the surface quality degrades. There exist obvious correlations between cutting forces and surface roughness.


2019 ◽  
Vol 969 ◽  
pp. 756-761
Author(s):  
Hari Vasudevan ◽  
Ramesh Rajguru ◽  
Moeiz Shaikh ◽  
Arsalan Shaikh

Many difficult to machine materials, such as Inconel 625Ni-based super alloy, are uncommon class of metallic materials with exceptional combination of greater thermal strength, toughness and resistance to deterioration. They have extensive applications in the manufacturing of new aero-engines, besides its enormous uses in marine, chemical and oil & petrochemical industries. In the context of its wide range of applications, there is a need for efficiently processing better methods in the manufacturing of such difficult to machine materials. This study consists of the turning operation of Ni-based super alloy Inconel 625 without coolant, carried out by physical vapour deposition (PVD) coated carbide inserts. The response parameters, such as surface roughness and material removal rate were evaluated in terms of cutting speed, feed rate and depth of cut. Sixteen experiments were carried out, based on Taguchi's Design of Experiments using orthogonal array. The resulting analysis was done based on response graph. The experimental results revealed that the feed rate was the most influential factor, followed by the depth of cut and cutting speed. The optimal parameters achieved were cutting speed of 90 m/min, the feed rate of 0.35 mm/rev and the depth of cut 0.2 mm.


Sign in / Sign up

Export Citation Format

Share Document