Silymarin Enriched Extract (Silybum marianum) Additive Effect on Doxorubicin-Mediated Cytotoxicity in PC-3 Prostate Cancer Cells

Planta Medica ◽  
2019 ◽  
Vol 85 (11/12) ◽  
pp. 997-1007 ◽  
Author(s):  
Katerina Gioti ◽  
Anastasia Papachristodoulou ◽  
Dimitra Benaki ◽  
Sophia Havaki ◽  
Apostolos Beloukas ◽  
...  

AbstractSilymarin-enriched extract (SEE) is obtained from Silybum marianum (Asteraceae). Doxorubicin (DXR) is a widely used chemotherapeutical yet with severe side effects. The goal of the present study was to assess the pharmacologic effect of SEE and its bioactive components silibinin and silychristine when administrated alone or in combination with DXR in the human prostate cancer cells (PC-3). PC-3 cells were treated with SEE, silibinin (silybins A and B), silychristine, alone, and in combination with DXR, and cell proliferation was assessed by the MTT assay. Cell cycle, apoptosis, and autophagy rate were assessed by flow cytometry. Expression levels of autophagy-related genes were quantified by qRT-PCR, ELISA and western blot while transmission electron microscopy was performed to reveal autophagic structures. Finally, NMR spectrometry was used to identify specific metabolites related to autophagy. SEE inhibited PC-3 cell proliferation in a dose-dependent manner while the co-treatment (DXR-SEE) revealed an additive cytotoxic effect. Cell cycle, apoptosis, and autophagy variations were observed in addition to altered expression levels of autophagy related genes (LC3, p62, NBR1, Beclin1, ULK1, AMBRA1), while several modifications in autophagic structures were identified after DXR-SEE co-treatment. Furthermore, treated cells showed a different metabolic profile, with significant alterations in autophagy-related metabolites such as branched-chain amino acids. In conclusion, the DXR-SEE co-treatment provokes perturbations in the autophagic mechanism of prostate cancer cells (PC-3) compared to DXR treatment alone, causing an excessive cell death. These findings propose the putative use of SEE as an adjuvant cytotoxic agent.

2011 ◽  
Vol 1 (3) ◽  
pp. 91 ◽  
Author(s):  
K. Merchant ◽  
J. Kumi-Diaka ◽  
A. Rathinavelu ◽  
N. Esiobu ◽  
R. Zoeller ◽  
...  

Background: Prostate cancer is the most common form of non-skin cancer within the United States and the second leading cause of cancer deaths. Survival rates for the advanced disease remain relatively low, and conventional treatments may be accompanied by significant side effects. As a result, current research is aimed at alternative or adjuvant treatments that will target components of the signal transduction, cell-cycle and apoptosis pathways, to induce cell death with little or no toxic side effects to the patient. In this study, we investigated the effect of genistein isoflavone, a soy derivative, on expression levels of genes involved in these pathways. The mechanism of genistein-induced cell death was also investigated. The chemosensitivity of the LNCaP prostate cancer cells to genistein was investigated using ATP and MTS assays, and a caspase binding assay was used to determine apoptosis induction. Several molecular targets were determined using cDNA microarray and RT-PCR analysis.Results: The overall data revealed that genistein induces cell death in a time- and dose-dependent manner, and regulates expression levels of several genes involved in carcinogenesis and immunity. Several cell-cycle genes were down-regulated, including the mitotic kinesins, cyclins and cyclin-dependent kinases. Various members of the Bcl-2 family of apoptotic proteins were also affected. The DefB1 and the HLA membrane receptor genes involved in immunogenicity were also up-regulated. Conclusion: The results indicate that genistein inhibits growth of the hormone-dependent prostate cancer cells, LNCaP, via apoptosis induction through regulation of some of the genes involved in carcinogenesis of many tumors, and immunogenicity. This study augments the potential phytotherapeutic and immunotherapeutic significance of genistein isoflavone. Key words: Genistein isoflavone, prostate cancer, expression of genes, phytotherapeutic adjuvant, immunotherapy and chemotherapy


2009 ◽  
Vol 16 (2) ◽  
pp. 325-332 ◽  
Author(s):  
Jason M D'Antonio ◽  
Donald J Vander Griend ◽  
John T Isaacs

During middle G1 of the cell cycle origins of replication orchestrate the ordered assembly of the pre-replication complex (pre-RC), allowing licensing of DNA required for DNA replication. Cyclin-dependent kinase activation of the pre-RC facilitates the recruitment of additional signaling factors, which triggers DNA unwinding and replication, while limiting such DNA replication to once and only once per cell cycle. For both the normal and malignant prostate, androgen is the major stimulator of cell proliferation and thus DNA replication. In both cases, the binding of androgen to the androgen receptor (AR) is required. However, the biochemical cascade involved in such AR-stimulated cell proliferation and DNA synthesis is dramatically different in normal versus malignant prostate cells. In normal prostate, AR-stimulated stromal cell paracrine secretion of andromedins stimulates DNA replication within prostatic epithelial cells, in which AR functions as a tumor suppressor gene by inducing proliferative quiescence and terminal differentiation. By direct contrast, nuclear AR in prostate cancer cells autonomously stimulates continuous growth via incorporation of AR into the pre-RC. Such a gain of function by AR-expressing prostate cancer cells requires that AR be efficiently degraded during mitosis since lack of such degradation leads to re-licensing problems, resulting in S-phase arrest during the subsequent cell cycle. Thus, acquisition of AR as part of the licensing complex for DNA replication represents a paradigm shift in how we view the role of AR in prostate cancer biology, and introduces a novel vulnerability in AR-expressing prostate cancer cells apt for therapeutic intervention.


2021 ◽  
Vol 12 ◽  
Author(s):  
Nurul Azwa Abd Wahab ◽  
Faridah Abas ◽  
Iekhsan Othman ◽  
Rakesh Naidu

Diarylpentanoids exhibit a high degree of anti-cancer activity and stability in vitro over curcumin in prostate cancer cells. Hence, this study aims to investigate the effects of a diarylpentanoid, 1,5-bis(4-hydroxy-3-methoxyphenyl)-1,4-pentadiene-3-one (MS13) on cytotoxicity, anti-proliferative, apoptosis-inducing, anti-migration properties, and the underlying molecular mechanisms on treated androgen-independent prostate cancer cells, DU 145 and PC-3. A cell viability assay has shown greater cytotoxicity effects of MS13-treated DU 145 cells (EC50 7.57 ± 0.2 µM) and PC-3 cells (EC50 7.80 ± 0.7 µM) compared to curcumin (EC50: DU 145; 34.25 ± 2.7 µM and PC-3; 27.77 ± 6.4 µM). In addition, MS13 exhibited significant anti-proliferative activity against AIPC cells compared to curcumin in a dose- and time-dependent manner. Morphological observation, increased caspase-3 activity, and reduced Bcl-2 protein levels in these cells indicated that MS13 induces apoptosis in a time- and dose-dependent. Moreover, MS13 effectively inhibited the migration of DU 145 and PC-3 cells. Our results suggest that cell cycle-apoptosis and PI3K pathways were the topmost significant pathways impacted by MS13 activity. Our findings suggest that MS13 may demonstrate the anti-cancer activity by modulating DEGs associated with the cell cycle-apoptosis and PI3K pathways, thus inhibiting cell proliferation and cell migration as well as inducing apoptosis in AIPC cells.


2018 ◽  
Vol 243 (12) ◽  
pp. 990-994 ◽  
Author(s):  
Gulsah Albayrak ◽  
Ece Konac ◽  
Asiye Ugras Dikmen ◽  
Cenk Y Bilen

Prostate cancer is one of the most common types of cancer in men and the leading cause of death in developed countries. With the aid of molecular and genetic profiling of cancers, cancer molecular subtypes are paving the way for tailored cancer therapy. FOXA1 has been identified as one of the seven molecular subtypes of prostate cancer. FOXA1 is involved in a variety of metabolic process such as glucose homeostasis and deregulation of its expression is crucial in prostate cancer progression. In this study, we investigated the effects of FOXA1 gene knock-out on the expression levels of various cancer cell metabolism and cell cycle-related protein expressions. FOXA1 gene was knocked-out by using CRISPR/Cas9 technique. While FOXA1 gene knock-out significantly altered Casp-9, Bax, CCND1, CDK4, and fibronectin protein expressions (P < 0.05, fold change: ∼40, 4.5, 2.5, 4.5, and 4, respectively), it did not affect the protein expression levels of Casp-3, Bcl-2, survivin, β-catenin, c-Myc, and GSK-3B. Knocking-out FOXA1 gene in androgen-dependent LNCaP prostate cancer cells inhibited CCND1 protein expression. Our pre-clinical results demonstrate the importance of FOXA1 as a drug target in the treatment of prostate cancer. Impact statement Knock-out studies offer a unique way of studying the function of genes especially for developmentally lethal genes. FOXA1 has prominent roles both in breast and prostate cancer pathogenesis due to its role in ER receptor signaling pathway. FOXA1 has also been identified as one of the seven molecular subtypes of primary prostate cancer. In the present study, we used an efficient gene knock-out method, CRISPR/Cas9, in order to investigate FOXA1 function on LNCaP prostate cancer cells in vitro. FOXA1 knock-out altered cell-cycle regulator CCND1 protein expression levels. Therefore, our results suggest that FOXA1 might be a plausible drug target for prostate cancer treatment.


2021 ◽  
Vol 49 (2) ◽  
pp. 030006052199221
Author(s):  
Haitian He ◽  
Jianhua Li ◽  
Mayao Luo ◽  
Qiang Wei

Objective Circular RNAs (circRNAs) are non-coding RNAs with high cancer-specific expression and the potential for regulating tumorigenesis. CircRNA_100395 is expressed at low levels in many cancers and is involved in the regulation of tumor cell proliferation and metastasis. However, its expression and function in prostate cancer remain unclear. Methods Endogenous expression levels of circRNA_100395 and microRNA-1228 (miR-1228) in prostate cancer tissue samples and cell lines were detected by quantitative reverse transcription-polymerase chain reaction. Cell proliferation, invasion, and migration, cell cycle distribution, and epithelial–mesenchymal transition (EMT) were analyzed in circRNA_100395-overexpressing prostate cancer cells by Cell Counting Kit-8, flow cytometry, Transwell assay, and western blotting, respectively. Results CircRNA_100395 expression was downregulated in cancerous prostate tissues relative to adjacent normal tissues. CircRNA_100395 expression was negatively correlated with tumor size, Gleason score, tumor stage, and lymph node metastasis. Moreover, circRNA_100395 overexpression inhibited cell proliferation, altered cell cycle distribution, reduced cell migration and invasion abilities, and suppressed EMT in prostate cancer cells. Moreover, miR-1228 was a direct downstream target of circRNA_100395, and the anti-tumor ability of circRNA_100395 was significantly reversed by miR-1228. Conclusion This study identified circRNA_100395 as an anti-tumor circRNA and a potential therapeutic target for prostate cancer.


Author(s):  
Ajai J. Pulianmackal ◽  
Dan Sun ◽  
Kenji Yumoto ◽  
Zhengda Li ◽  
Yu-Chih Chen ◽  
...  

The proliferation-quiescence decision is a dynamic process that remains incompletely understood. Live-cell imaging with fluorescent cell cycle sensors now allows us to visualize the dynamics of cell cycle transitions and has revealed that proliferation-quiescence decisions can be highly heterogeneous, even among clonal cell lines in culture. Under normal culture conditions, cells often spontaneously enter non-cycling G0 states of varying duration and depth. This also occurs in cancer cells and G0 entry in tumors may underlie tumor dormancy and issues with cancer recurrence. Here we show that a cell cycle indicator previously shown to indicate G0 upon serum starvation, mVenus-p27K-, can also be used to monitor spontaneous quiescence in untransformed and cancer cell lines. We find that the duration of spontaneous quiescence in untransformed and cancer cells is heterogeneous and that a portion of this heterogeneity results from asynchronous proliferation-quiescence decisions in pairs of daughters after mitosis, where one daughter cell enters or remains in temporary quiescence while the other does not. We find that cancer dormancy signals influence both entry into quiescence and asynchronous proliferation-quiescence decisions after mitosis. Finally, we show that spontaneously quiescent prostate cancer cells exhibit altered expression of components of the Hippo pathway and are enriched for the stem cell markers CD133 and CD44. This suggests a hypothesis that dormancy signals could promote cancer recurrence by increasing the proportion of quiescent tumor cells poised for cell cycle re-entry with stem cell characteristics in cancer.


2013 ◽  
Vol 31 (6_suppl) ◽  
pp. 87-87
Author(s):  
Giorgio Santoni ◽  
Valerio Farfariello ◽  
Maria Beatrice Morelli ◽  
Sonia Liberati ◽  
Massimo Nabissi ◽  
...  

87 Background: Growing evidence supports the role of α1-ARs in the direct mitogenic effect of catecholamines on prostate cancer (PC) cell growth. The expression of α1D-AR on PC3 prostate cancer cells and the ability of noradrenalin (NA) to stimulate PC3 cell proliferation in a α1D-AR-dependent manner were reported (Quaglia et al., 2005). In addition, TRPV1 expression was also found in prostate cancers (Sanchez et al., 2006). Aim of this study was to investigate the relationship between α1D-AR and TRPV1 receptors and the involvement of TRPV1 in NA-induced proliferation in PC3 cells. Methods: By western blot analysis and confocal microscopy the expression α1D-AR and TRPV1 and localization in PC3 cells were evaluated. PC3 cells were incubated with NA alone or in combination with WS433 and capsazepine (CPZ), α1D-AR and TRPV1 antagonists. Proton release, calcium influx and cell proliferation were assessed in α1D-AR-, TRPV1- or α1D-AR/TRPV1 double-silenced PC3 cells by cytosensor and cytofluorymetric analyses. Finally, lysates from NA-treated PC3 cells alone or in combination with WS433 or CPZ were blotted with anti-phospho ERK, anti-ERK and anti-phospho-(Ser) PKC substrate Abs and Inositol-1,4,5-trisphosphate [3H] radioreceptor assay were performed. Results: α1D-AR and TRPV1 co-localize and are co-immunoprecipitated in PC3 cells. Treatment of PC3 cells with NA strongly stimulated proton release, calcium influx and cell proliferation that were reverted by α1D-AR WS433 and TRPV1 antagonist. NA-induced increase of survival and proliferation was totally abrogated in α1D-AR/TRPV1 silenced cells. In addition, NA stimulates ERK and PKC substrate phosphorylation that was inhibited by WS433 and CPZ. Finally, CPZ treatment inhibited NA-dependent PLC activation, while WS433 had no effect. Conclusions: A functional and structural cross-talk between α1D-AR and TRPV1 receptors control NA-induced proliferation of PC cells. These data strongly suggest the development of new pharmaceutical approaches based on bifunctional antibodies and molecules recognizing both α1D-AR and TRPV1 receptors.


Cancers ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 945 ◽  
Author(s):  
Luna Laera ◽  
Nicoletta Guaragnella ◽  
Sergio Giannattasio ◽  
Loredana Moro

Background: Mutations in the oncosuppressor gene BReast CAncer susceptibility gene 2 (BRCA2) predispose to aggressive forms of prostate cancer which show poor response to taxane-based therapy, the standard treatment for castration-resistant, aggressive prostate cancer. Herein, we addressed the question whether changes in BRCA2 expression, a potential surrogate marker for BRCA2 activity, may affect the response of castration-resistant prostate cancer cells to 6-thioguanine (6-TG), a thiopurine used in the treatment of haematological malignancies. Methods: Yeast, normal prostate cells and castration-resistant prostate cancer cells were treated with 6-TG or its analogues, in presence or absence of paclitaxel, or with olaparib, a poly-(ADP-ribose) polymerase (PARP) inhibitor currently in clinical trials for treatment of metastatic castration-resistant prostate cancer, and cell proliferation, apoptosis and androgen receptor (AR) levels were measured. Results: 6-TG inhibited cell proliferation in yeast, normal and castration-resistant prostate cancer cells but promoted apoptosis only in cancer cells. Suppression of BRCA2 expression by siRNA or shRNA increased the sensitivity to 6-TG- and olaparib-induced apoptosis but did not affect cancer cell response to taxane. Intriguingly, 6-TG reduced AR expression levels independently on BRCA2 expression. Instead, olaparib decreased AR levels only in BRCA2-knockdown prostate cancer cells. Notably, overexpression of BRCA2 resulted in resistance of castration-resistant prostate cancer cells to 6-TG-, taxane- and olaparib-based treatment but promoted sensitivity to apoptosis induced by 2-amino-6-bromopurine and 2,6–dithiopurine, two 6-TG analogues. Conclusions: Our results provide a pre-clinical rationale for the use of 6-TG in the treatment of BRCA2-deficient castration-resistant prostate cancers, and of certain 6-TG analogues for treatment of BRCA2-proficient prostate cancers.


Sign in / Sign up

Export Citation Format

Share Document