Osteoblasts Regulate the Expression of ADAMTS and MMPs in Chondrocytes through ERK Signaling Pathway

Author(s):  
Xiao Ding ◽  
Wei Xiang ◽  
Defeng Meng ◽  
Wang Chao ◽  
Han Fei ◽  
...  

Objective Degradative enzymes such as matrix metalloproteinase (MMP) and disintegrin metalloproteinase with platelet thrombin-sensitive protein-like motifs (ADAMTS) play a key role in the development of osteoarthritis (OA). We aimed to investigate the effects of OA subchondral osteoblasts on the expression of ADAMTS4, ADAMTS5, MMP-3, MMP-9, and MMP-13 in chondrocytes and the regulation of mitogen-activated protein kinase (MAPK) signaling pathway. Methods A rat knee OA model was constructed by cutting the anterior cruciate ligament of the knee joints, and normal rat articular cartilage chondrocytes (N-ACC), OA rat articular cartilage chondrocytes (O-ACC), normal subchondral bone osteoblasts (N-SBO), and OA subchondral bone osteoblasts (O-SBO) were isolated and extracted. The expressions of O-ACC and O-SBO COL1 and COL2 were detected respectively. Chondrocytes were identified by immunofluorescence of COL2 and toluidine blue staining, and osteoblasts were identified by COL1 immunofluorescence, alkaline phosphatase (ALP), and Alizarin Red staining. Gene expression of COL1, COL2, and aggrecan in normal chondrocytes and OA chondrocytes, and gene expression of osteoblast ALP and osteocalcin (OCN) were detected by RT-PCR to identify the two chondrocytes and the two osteoblast phenotypes. The constructing N-ACC group, O-ACC group, N-ACC + N-SBO group, N-ACC + O-SBO group, O-ACC + N-SBO group, O-ACC + O-SBO group, I + N-ACC + O-SBO group, and I + O-ACC + O-SBO group cell cultures, and the expression of ERK, ADAMTS4, ADAMTS5, MMP-3, MMP-9, and MMP-13 genes in chondrocytes cultured for 0, 24, 48, and 72 h were detected by RT-PCR. The protein expressions of pERK, ADAMTS4, ADAMTS5, MMP-3, MMP-9, and MMP-13 were detected by Western blot. Results Conclusions

2012 ◽  
Vol 39 (3) ◽  
pp. 621-634 ◽  
Author(s):  
INDIRA PRASADAM ◽  
ROSS CRAWFORD ◽  
YIN XIAO

Objective.Degradative enzymes, such as A disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS) and matrix metalloproteinases (MMP), play key roles in development of osteoarthritis (OA). We investigated if crosstalk between subchondral bone osteoblasts (SBO) and articular cartilage chondrocytes (ACC) in OA alters the expression and regulation of ADAMTS5, ADAMTS4, MMP-1, MMP-2, MMP-3, MMP-8, MMP-9, and MMP-13, and also tested the possible involvement of mitogen-activated protein kinase (MAPK) signaling pathway during this process.Methods.ACC and SBO were isolated from normal and OA patients. An in vitro coculture model was developed to study the regulation of ADAMTS and MMP under normal and OA joint crosstalk conditions. The MAPK-ERK inhibitor PD98059 was applied to delineate the involvement of specific pathways during this interaction process.Results.Indirect coculture of OA SBO with normal ACC resulted in significantly increased expression of ADAMTS5, ADAMTS4, MMP-2, MMP-3, and MMP-9 in ACC, whereas coculture of OA ACC led to increased MMP-1 and MMP-2 expression in normal SBO. Upregulation of ADAMTS and MMP under these conditions was correlated with activation of the MAPK-ERK1/2 signaling pathway, and addition of the MAPK-ERK inhibitor PD98059 reversed the overexpression of ADAMTS and MMP in cocultures.Conclusion.These results add to the evidence that in human OA, altered bidirectional signals between SBO and ACC significantly influence the critical features of both cartilage and bone by producing abnormal levels of ADAMTS and MMP. We have demonstrated for the first time that this altered crosstalk was mediated by the phosphorylation of MAPK-ERK1/2 signaling pathway.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Jia Tang ◽  
Takashi Saito

Aim. To analyze the effect of three mitogen-activated protein kinase (MAPK) inhibitors, namely, SB202190 (p38 inhibitor), SP600125 (JNK inhibitor), and PD98059 (ERK inhibitor) in Dex-stimulated MDPC-23 cell differentiation and mineralization. Methods. Experiment was divided into five groups, control (cells without Dex and inhibitors treatment), Dex (cells with Dex treatment but without inhibitors), Dex + SB202190, Dex + SP600125, and Dex + PD98059. Cell differentiation was assessed by alkaline phosphatase (ALP) activity assay and real time RT-PCR. Cell mineralization was investigated by alizarin red staining. Results. Exposure to SB202190 (20 μM) significantly decreased the mineral deposition in Dex-treated cells as demonstrated by alizarin red staining. Treatment of SP600125 (20 μM) attenuated the mineralization as well, albeit at a lower degree as compared to SB202190 (20 μM). Similarly, SB202190 (20 μM) completely abrogated the ALP activity stimulated by Dex at six days in culture, while no changes were observed with regard to ALP activity in SP600125 (20 μM) and PD98059 (20 μM) treated cells. The upregulation of bone sialoprotein (BSP), ALP, and osteopontin (OPN) in Dex challenged cells was completely inhibited by SB202190. Conclusion. Blockade of p38-MAPK signaling pathway resulted in significant inhibition of ALP activity, mineralization, and downregulation of osteogenic markers. The data implicated that p38 signaling pathway plays a critical role in the regulation of MDPC-23 cells differentiation and mineralization.


2019 ◽  
Vol 39 (6) ◽  
Author(s):  
Zongqiang Gao ◽  
Chen Duan ◽  
Fang-fang Yu ◽  
Xiong Guo

AbstractKashin–beck disease (KBD) is endemic chronic osteoarthrosis and its pathogenesis is still unclear. The present study aimed to explore differential gene expression in articular cartilage between patients with rheumatoid arthritis (RA) and KBD. Articular cartilages were collected from KBD and RA patients, and differentially expressed genes (DEGs) were analyzed by RNA-seq. The signaling pathway and biological process (BP) of the DEGs were identified by enrichment analysis. The protein–protein interaction (PPI) network of DEGs and the key genes of KBD were identified by network analysis with STRING and cytoscape software. We identified 167 immune-related DEGs in articular cartilage samples from KBD patients compared with RA. The up-regulation of MAPK signaling pathway and the down-regulation of signaling pathways such as toll-like receptor, janus kinase-signal transducers and activators of transcription, leukocyte migration, T-cell receptor and chemokine, and antigen processing and presentation were involved in KBD. We identified 137 genes nodes related with immune and mapped the PPI network diagram. BP analysis revealed that immune response, calcium ion homeostasis, blood vessel morphogenesis, inflammatory response, lymphocyte proliferation, and MAPK activation were involved in KBD. In conclusion, gene expression profiling can be used to identify the different mechanism of pathogenesis between KBD and RA.


2020 ◽  
Vol 11 ◽  
Author(s):  
Jiawen Yong ◽  
Julia von Bremen ◽  
Gisela Ruiz-Heiland ◽  
Sabine Ruf

Current clinical evidences suggest that circulating Adipokines such as Adiponectin can influence the ratio of orthodontic tooth movement. We aimed to investigate the effect that Adiponectin has on cementoblasts (OCCM-30) and on the intracellular signaling molecules of Mitogen-activated protein kinase (MAPK). We demonstrated that OCCM-30 cells express AdipoR1 and AdipoR2. Alizarin Red S staining revealed that Adiponectin increases mineralized nodule formation and quantitative AP activity in a dose-dependent manner. Adiponectin up-regulates the mRNA levels of AP, BSP, OCN, OPG, Runx-2 as well as F-Spondin. Adiponectin also increases the migration and proliferation of OCCM-30 cells. Moreover, Adiponectin induces a transient activation of JNK, P38, ERK1/2 and promotes the phosphorylation of STAT1 and STAT3. The activation of Adiponectin-mediated migration and proliferation was attenuated after pharmacological inhibition of P38, ERK1/2 and JNK in different degrees, whereas mineralization was facilitated by MAPK inhibition in varying degrees. Based on our results, Adiponectin favorably affect OCCM-30 cell migration, proliferation as well as cementogenesis. One of the underlying mechanisms is the activation of MAPK signaling pathway.


2021 ◽  
Vol 12 ◽  
Author(s):  
Wang Yajun ◽  
Cui Jin ◽  
Gu Zhengrong ◽  
Fang Chao ◽  
Hu Yan ◽  
...  

Osteoarthritis (OA) is the most common type of arthritis with no effective therapy. Subchondral bone and overlying articular cartilage are closely associated and function as “osteo-chondral unit” in the joint. Abnormal mechanical load leads to activated osteoclast activity and increased bone resorption in the subchondral bone, which is implicated in the onset of OA pathogenesis. Thus, inhibiting subchondral bone osteoclast activation could prevent OA onset. Betaine, isolated from the Lycii Radicis Cortex (LRC), has been demonstrated to exert anti-inflammatory, antifibrotic and antiangiogenic properties. Here, we evaluated the effects of betaine on anterior cruciate ligament transection (ACLT)-induced OA mice. We observed that betaine decreased the number of matrix metalloproteinase 13 (MMP-13)-positive and collagen X (Col X)-positive cells, prevented articular cartilage proteoglycan loss and lowered the OARSI score. Betaine decreased the thickness of calcified cartilage and increased the expression level of lubricin. Moreover, betaine normalized uncoupled subchondral bone remodeling as defined by lowered trabecular pattern factor (Tb.pf) and increased subchondral bone plate thickness (SBP). Additionally, aberrant angiogenesis in subchondral bone was blunted by betaine treatment. Mechanistically, we demonstrated that betaine suppressed osteoclastogenesis in vitro by inhibiting reactive oxygen species (ROS) production and subsequent mitogen-activated protein kinase (MAPK) signaling. These data demonstrated that betaine attenuated OA progression by inhibiting hyperactivated osteoclastogenesis and maintaining microarchitecture in subchondral bone.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Wei Lin ◽  
Huijun Kang ◽  
Yike Dai ◽  
Yingzhen Niu ◽  
Guangmin Yang ◽  
...  

Abstract Background Patellar instability (PI) often increases the possibility of lateral patellar dislocation and early osteoarthritis. The molecular mechanism of early articular cartilage degeneration during patellofemoral osteoarthritis (PFOA) still requires further investigation. However, it is known that the NF-κB signaling pathway plays an important role in articular cartilage degeneration. The aim of this study was to investigate the relationship between the NF-κB signaling pathway and patellofemoral joint cartilage degeneration. Methods We established a rat model of PI-induced PFOA. Female 4-week-old Sprague-Dawley rats (n = 120) were randomly divided into two groups: the PI (n = 60) and control group (n = 60). The distal femurs of the PI and control group were isolated and compared 4, 8, and 12 weeks after surgery. The morphological structure of the trochlear cartilage and subchondral bone were evaluated by micro-computed tomography and histology. The expression of NF-κB, matrix metalloproteinase (MMP)-13, collagen X, and TNF-ɑ were evaluated by immunohistochemistry and quantitative polymerase chain reaction. Results In the PI group, subchondral bone loss and cartilage degeneration were found 4 weeks after surgery. Compared with the control group, the protein and mRNA expression of NF-κB and TNF-ɑ were significantly increased 4, 8, and 12 weeks after surgery in the PI group. In addition, the markers of cartilage degeneration MMP-13 and collagen X were more highly expressed in the PI group compared with the control group at different time points after surgery. Conclusions This study has demonstrated that early patellofemoral joint cartilage degeneration can be caused by PI in growing rats, accompanied by significant subchondral bone loss and cartilage degeneration. In addition, the degeneration of articular cartilage may be associated with the activation of the NF-κB signaling pathway and can deteriorate with time as a result of PI.


2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Li Li ◽  
Huabo Jiang ◽  
Xuecong Wei ◽  
Dandan Geng ◽  
Ming He ◽  
...  

Vascular endothelial growth factor receptor-2 (VEGFR-2) regulates the mitogen-activated protein kinase (MAPK) signaling pathway and plays an important role in angiogenesis. Bu Shen Zhu Yun decoction (BSZYD) can improve endometrial receptivity and embryo implantation rates in patients undergoing in vitro fertilization. However, whether BSZYD improves endometrial receptivity via angiogenesis remains unclear. Here, we investigated the effects of BSZYD on the proliferation, migration, and angiogenesis of human endometrial microvascular endothelial cells (HEMECs) and found that BSZYD upregulated the expression of cyclin D1, matrix metalloproteinase 9 (MMP9), and proliferating cell nuclear antigen (PCNA) in HEMECs. Cell Counting Kit 8 assay, scratch-wound assay, and Tube Formation Assay results showed that BSZYD promoted the proliferation, migration, and angiogenesis of HEMECs. Western blot analysis results revealed the activation of the MAPK signaling pathway by BSZYD through the upregulation of VEGF and VEGFR-2 expression. Together, these findings highlight the novel mechanism underlying BSZYD-mediated improvement in endometrial receptivity through the MAPK signaling pathway.


2020 ◽  
Author(s):  
Jing-Shuai Wu ◽  
Qin-Yu Meng ◽  
Xiao-Hui Shi ◽  
Zhen-Kun Zhang ◽  
Hua-Shi Guan ◽  
...  

Abstract Background: Neuroinflammatory processes are critical in the development and progression of Alzheimer's disease (AD). The potent anti-neuroinflammatory inhibitors are expected as the candidates to treat AD. Cryptotanshinone (1), a major bioactive constituent in the traditional Chinese medicinal herb Dan-Shen Salvia miltiorrhiza Bunge, has been reported to possess remarkable pharmacological activities, especially anti-oxidation and anti-inflammation. Methods: Cryptotanshinone (1) was biotransformed with the fungus Cunninghamella elegans AS3.2028 to improve its bioactivities and physicochemical properties. The structures of transformed products were elucidated by comprehensive spectroscopic analysis including HRESIMS, NMR and ECD data. Their anti-neuroinflammatory activities were assessed by ELISA, transcriptome analysis, western blot, and immunofluorescence methods. Results: Three oxygenated products (2–4) at C-3 of cryptotanshinone (1) were obtained, among them 2 was a new compound. All of the biotransformed products (2–4) were found to inhibit significantly lipopolysaccharide-induced nitric oxide production in BV2 microglia cells with the IC50 values of 0.16‒1.16 μM, approximately 2‒20 folds stronger than the substrate (1). These biotransformed products also displayed remarkably improved inhibitory effects on the production of inflammatory cytokines (IL-1β, IL-6, TNF-α, COX-2 and iNOS) in BV-2 cells via targeting TLR4 compared to substrate (1). The underlying mechanism of 2 was elucidated by comparative transcriptome analysis, which suggested that it reduced neuroinflammatory mainly through mitogen-activated protein kinase (MAPK) signaling pathway. Western blotting results revealed that 2 downregulated LPS-induced phosphorylation of JNK, ERK, and p38 in MAPK signaling pathway. Conclusion: The biotransformed products of cryptotanshinone exhibit potent anti-neuroinflammatory activities. These findings provide a basal material for the discovery of candidates in treating AD.


2021 ◽  
Vol 13 (3) ◽  
pp. 463-472
Author(s):  
Fengting Yin ◽  
Xiaokun Li ◽  
Weili Zhang

This study aimed to explore the analgesic effect of snake neurotoxin combined with gabapentin (Gab) on neuropathic pain in rats with chronic compression injury (CCI) of the sciatic nerve based on the nanotechnology. Firstly, various solutions were prepared to obtain the inner water phase, the oil phase, the outer water phase, and the dilution phase. Poly(lactic-co-glycolic) Acid (PLGA) and polyethylene glycol-poly(lactic-co-glycolic) acid (PEG-PLGA) were added to the prepared oil phase solution to obtain the PLGA snake neurotoxin nanocapsule and PEG-PLGA snake neurotoxin nanocapsule, respectively. After the nanocapsules were obtained, a rat CCI model was further modelled, and the reactive oxygen species (ROS) content in the rat brain tissue was analyzed and tested by the kit, and the optimal physical conditions for preparing the nanocapsules were tested. In order to test the effect of nanocapsules on the p38 mitogen-activated protein kinase (MAPK) signaling pathway, the rats were divided into Control group, Sham group, CCI group, Gabapentin (Gab) group, and PEG-PLGA snake neurotoxin nanocapsule + Gab group. The rats in different groups were given abdominal injections to compare relevant indicators of signal pathway. In the experiment, neuropathic pain was related to changes in ROS content, and snake neurotoxin nanocapsules could reduce the ROS content; PLGA snake neurotoxin nanocapsules and PEG-PLGA snake neurotoxin nanocapsules had encapsulation efficiencys of 24.7% and 22.8% and drug loading of 3.28% and 3.02%, respectively, and the particle sizes of prepared nanocapsules were 760 nm~1,150 nm. Besides, the phase transition temperature of about 50 °C and the light time of 1 h can accelerate the release of nanocapsules to the greatest extent; and the snake neurotoxin could inhibit the activation of p38 MAPK signaling pathway so as to play the analgesic effects on neuropathic pain.


Sign in / Sign up

Export Citation Format

Share Document