Regenerative Therapies in Neonatology: Clinical Perspectives

2012 ◽  
Vol 224 (04) ◽  
pp. 233-240 ◽  
Author(s):  
L. Gortner ◽  
U. Felderhoff-Müser ◽  
D. Monz ◽  
K. Bieback ◽  
H. Klüter ◽  
...  

AbstractRegenerative therapy based on stem cells is applied as standard therapy in pediatric oncology. Furthermore, they are frequently used to treat immunodeficiency disorders of infants. For severe neonatal diseases, e. g. hypoxic-ischemic encephalopathy in term neonates or bronchopulmonary dysplasia in preterm infants, animal models have been established. According to some first preclinical results stem cell administration appears as a promising tool to improve the clinical outcome in high-risk infants. Provided the benefit of regenerative therapies can further be evaluated in appropriate preclinical neonate models, carefully controlled clinical trials to assess the significance of regenerative therapies, such as autologous stem cell administration, are indicated.

Cell Medicine ◽  
2018 ◽  
Vol 10 ◽  
pp. 215517901877375 ◽  
Author(s):  
Patrick Narbonne

During development, stem cells generate all of the differentiated cells that populate our tissues and organs. Stem cells are also responsible for tissue turnover and repair in adults, and as such, they hold tremendous promise for regenerative therapy. Aging, however, impairs the function of stem cells and is thus a significant roadblock to using stem cells for therapy. Paradoxically, the patients who would benefit the most from regenerative therapies are usually advanced in age. The use of stem cells from young donors or the rejuvenation of aged patient-derived stem cells may represent part of a solution. Nonetheless, the transplantation success of young or rejuvenated stem cells in aged patients is still problematic, since stem cell function is greatly influenced by extrinsic factors that become unsupportive with age. This article briefly reviews how aging impairs stem cell function, and how this has an impact on the use of stem cells for therapy.


2021 ◽  
Vol 7 (4) ◽  
pp. 1-3
Author(s):  
Yehonatan Zur ◽  
◽  
Tzila Davidov ◽  
Limor Baruch ◽  
Marcelle Machluf ◽  
...  

Aiming to restore the normal function of diseased or injured tissues, regenerative therapy approaches are generally based on the engineering of complex tissue-mimicking grafts, encompassing biomaterial scaffolds, stem cells, or their combinations [1-4]. Due to the major role of stem cells in physiological regenerative mechanisms, regenerative therapies normally rely on either stem cells transplantation or stem cell recruitment from the neighboring tissue into the implanted scaffold


2016 ◽  
Vol 2016 ◽  
pp. 1-13 ◽  
Author(s):  
Kihoon Ahn ◽  
Sung-Hwan Kim ◽  
Gi-Hun Lee ◽  
SeungJin Lee ◽  
Yun Seok Heo ◽  
...  

Stem cells have infinite potential for regenerative therapy thanks to their advantageous ability which is differentiable to requisite cell types for recovery and self-renewal. The microsystem has been proved to be more helpful to stem cell studies compared to the traditional methods, relying on its advantageous feature of mimickingin vivocellular environments as well as other profitable features such as minimum sample consumption for analysis and multiprocedures. A wide variety of microsystems were developed for stem cell studies; however, regenerative therapy-targeted applications of microtechnology should be more emphasized and gain more attractions since the regenerative therapy is one of ultimate goals of biologists and bioengineers. In this review, we introduce stem cell researches harnessing well-known microtechniques (microwell, micropattern, and microfluidic channel) in view point of physical principles and how these systems and principles have been implemented appropriately for characterizing stem cells and finding possible regenerative therapies. Biologists may gain information on the principles of microsystems to apply them to find solutions for their current challenges, and engineers may understand limitations of the conventional microsystems and find new chances for further developing practical microsystems. Through the well combination of engineers and biologists, the regenerative therapy-targeted stem cell researches harnessing microtechnology will find better suitable treatments for human disorders.


2021 ◽  
pp. ASN.2021081073
Author(s):  
Melissa Little ◽  
Benjamin Humphreys

Fifteen years ago, this journal published a review outlining future options for regenerating the kidney. At that time, stem cell populations were being identified in multiple tissues, the concept of stem cell recruitment to a site of injury was of great interest, and the possibility of postnatal renal stem cells was growing in momentum. Since that time, we have seen the advent of human induced pluripotent stem cells, substantial advances in our capacity to both sequence and edit the genome, global and spatial transcriptional analysis down to the single-cell level, and a pandemic that has challenged our delivery of health care to all. This article will look back over this period of time to see how our view of kidney development, disease, repair, and regeneration has changed and envision a future for kidney regeneration and repair over the next 15 years.


2019 ◽  
Vol 1 (1) ◽  
pp. 36-39
Author(s):  
Bernd Giebel ◽  
Verena Börger ◽  
Mario Gimona ◽  
Eva Rohde

Human mesenchymal stem/stromal cells (MSCs) represent a promising tool in regenerative medicine. Until now, almost one thousand NIH-registered clinical trials investigated their immunomodulatory and pro-regenerative therapeutic potential in various diseases. Despite controversial reports regarding the efficacy of MSC-treatments, MSCs appear to exert their beneficial effects in a paracrine manner rather than by cell replacement. In this context, extracellular vesicles (EVs), such as exosomes and microvesicles, seem to induce the MSCs’ therapeutic effects. Here, we briefly illustrate the potential of MSC-EVs as therapeutic agent of the future.


2020 ◽  
Vol 22 (3) ◽  
pp. 286-305 ◽  
Author(s):  
Shuai Zhang ◽  
Brittany Bolduc Lachance ◽  
Bilal Moiz ◽  
Xiaofeng Jia

Stem cells have been used for regenerative and therapeutic purposes in a variety of diseases. In ischemic brain injury, preclinical studies have been promising, but have failed to translate results to clinical trials. We aimed to explore the application of stem cells after ischemic brain injury by focusing on topics such as delivery routes, regeneration efficacy, adverse effects, and in vivo potential optimization. PUBMED and Web of Science were searched for the latest studies examining stem cell therapy applications in ischemic brain injury, particularly after stroke or cardiac arrest, with a focus on studies addressing delivery optimization, stem cell type comparison, or translational aspects. Other studies providing further understanding or potential contributions to ischemic brain injury treatment were also included. Multiple stem cell types have been investigated in ischemic brain injury treatment, with a strong literature base in the treatment of stroke. Studies have suggested that stem cell administration after ischemic brain injury exerts paracrine effects via growth factor release, blood-brain barrier integrity protection, and allows for exosome release for ischemic injury mitigation. To date, limited studies have investigated these therapeutic mechanisms in the setting of cardiac arrest or therapeutic hypothermia. Several delivery modalities are available, each with limitations regarding invasiveness and safety outcomes. Intranasal delivery presents a potentially improved mechanism, and hypoxic conditioning offers a potential stem cell therapy optimization strategy for ischemic brain injury. The use of stem cells to treat ischemic brain injury in clinical trials is in its early phase; however, increasing preclinical evidence suggests that stem cells can contribute to the down-regulation of inflammatory phenotypes and regeneration following injury. The safety and the tolerability profile of stem cells have been confirmed, and their potent therapeutic effects make them powerful therapeutic agents for ischemic brain injury patients.


2017 ◽  
Vol 4 (3-4) ◽  
pp. 234-235 ◽  
Author(s):  
Vlassov V Salval ◽  
Yone Moto

More than 500 clinical trials are using mesenchymal stem cells (MSCs) in the world to treat some different diseases. The safety of expanded MSC transplantation is the most important thing to ensure that this therapy can become the routine treatment for human diseases. More than five MSCs based stem cell drug products are approved at various countries demonstrated that expanded MSCs are safe in both local injection and transfusion. Moreover, some recent reports for 5 and 10 years followed-up clinical trials using expanded MSCs confirmed that there is not different tumorigenesis between the patients with and without expanded MSC transplantation. This letter aims to provide some evidences about the safety of expanded MSCs in clinical applications. However, the MSC quality should be stritcly controlled during the in vitro MSC expansion.


2021 ◽  
Vol 26 ◽  
pp. 169-191
Author(s):  
Emma E. Redfield ◽  
Erin K. Luciano ◽  
Monica J. Sewell ◽  
Lucas A. Mitzel ◽  
Isaac J. Sanford ◽  
...  

This study looks at the number of clinical trials involving specific stem cell types. To our knowledge, this has never been done before. Stem cell clinical trials that were conducted at locations in the US and registered on the National Institutes of Health database at ‘clinicaltrials.gov’ were categorized according to the type of stem cell used (adult, cancer, embryonic, perinatal, or induced pluripotent) and the year that the trial was registered. From 1999 to 2014, there were 2,357 US stem cell clinical trials registered on ‘clinicaltrials.gov,’ and 89 percent were from adult stem cells and only 0.12 percent were from embryonic stem cells. This study concludes that embryonic stem cells should no longer be used for clinical study because of their irrelevance, moral questions, and induced pluripotent stem cells.


2019 ◽  
Vol 20 (6) ◽  
pp. 1420 ◽  
Author(s):  
Bernhard Wernly ◽  
Moritz Mirna ◽  
Richard Rezar ◽  
Christine Prodinger ◽  
Christian Jung ◽  
...  

Although reperfusion therapy has improved outcomes, acute myocardial infarction (AMI) is still associated with both significant mortality and morbidity. Once irreversible myocardial cell death due to ischemia and reperfusion sets in, scarring leads to reduction in left ventricular function and subsequent heart failure. Regenerative cardiovascular medicine experienced a boost in the early 2000s when regenerative effects of bone marrow stem cells in a murine model of AMI were described. Translation from an animal model to stem cell application in a clinical setting was rapid and the first large trials in humans suffering from AMI were conducted. However, high initial hopes were early shattered by inconsistent results of randomized clinical trials in patients suffering from AMI treated with stem cells. Hence, we provide an overview of both basic science and clinical trials carried out in regenerative cardiovascular therapies. Possible pitfalls in specific cell processing techniques and trial design are discussed as these factors influence both basic science and clinical outcomes. We address possible solutions. Alternative mechanisms and explanations for effects seen in both basic science and some clinical trials are discussed here, with special emphasis on paracrine mechanisms via growth factors, exosomes, and microRNAs. Based on these findings, we propose an outlook in which stem cell therapy, or therapeutic effects associated with stem cell therapy, such as paracrine mechanisms, might play an important role in the future. Optimizing stem cell processing and a better understanding of paracrine signaling as well as its effect on cardioprotection and remodeling after AMI might improve not only AMI research, but also our patients’ outcomes.


2020 ◽  
Vol 58 (5) ◽  
pp. 881-887
Author(s):  
Shuta Ishigami ◽  
Toshikazu Sano ◽  
Sunaya Krishnapura ◽  
Tatsuo Ito ◽  
Shunji Sano

Abstract Significant achievements in paediatric cardiology, surgical treatment and intensive care of congenital heart disease have drastically changed clinical outcomes for paediatric patients. Nevertheless, late-onset heart failure in children after staged surgeries still remains a serious concern in the medical community. Heart transplantation is an option for treatment; however, the shortage of available organs is a persistent problem in many developed countries. In order to resolve these issues, advanced technologies, such as innovative mechanical circulatory support devices and regenerative therapies, are strongly desired. Accumulated evidence regarding cell-based cardiac regenerative therapies has suggested their safety and efficacy in treating adult heart failure. Given that young children seem to have a higher regenerative capacity than adults, stem cell-based therapies appear a promising treatment option for paediatric heart failure as well. Based on the findings from past trials and studies, we present the potential of various different types of stem cells, ranging from bone marrow mononuclear cells to cardiosphere-derived stem cells for use in paediatric cell-based therapies. Here, we assess both the current challenges associated with cell-based therapies and novel strategies that may be implemented in the future to advance stem cell therapy in the paediatric population.


Sign in / Sign up

Export Citation Format

Share Document