Effect of Omega-3 Fatty Acid Supplementation on Platelet Aggregability and Platelet Produced Thromboxane

1987 ◽  
Vol 57 (03) ◽  
pp. 269-272 ◽  
Author(s):  
Riitta Salonen ◽  
Tapio Nikkari ◽  
Kari Seppänen ◽  
Juha M Venäläinen ◽  
Merja Ihanainen ◽  
...  

SummaryWe investigated the sustained effect of 12-week supplementation of 2.880 g/day of omega-3 fatty acids on platelet aggregability, platelet produced thromboxane B2 concentration and serum fatty acid composition in a double-blind controlled trial in 44 healthy mildly overweight eastern Finnish men recruited from a representative population sample. The supplementation was discontinued seven days before the biochemical measurements. Body weight, alcohol consumption and dietary composition remained constant during the study. Even though the percentage of eicosapentaenoic acid (20:5ω3) in total serum lipids increased by 37% (p <0.01) and that of dihomo-gamma-linolenic acid (20:3ω6) decreased by 18% (p <0.01) more in the omega-3 supplemented than placebo group during supplementation, there were no significant differences in the changes in either the ADP induced platelet aggregation or in vitro platelet produced thromboxane B2 concentration between the groups. These data suggest that omega-3 fatty acids have no detectable sustained effect either on ADP induced platelet aggregation or on thromboxane produced by the platelets in vitro.

2018 ◽  
Vol 46 (12) ◽  
pp. 5074-5082 ◽  
Author(s):  
Thomas Kander ◽  
Erik Lindblom ◽  
Ulf Schött

Objective This study aimed to evaluate the dose-response effects of supplemental omega-3 fatty acids on platelet function in healthy volunteers. Methods Twelve healthy volunteers ingested a normal supplemental dose of 1260 mg omega-3 fatty acids daily for 5 days, followed by a high dose of 2520 mg daily for another 5 days. Multiple electrode aggregometry (MEA) with four different agonists was used to measure platelet aggregation before and after the normal- and high-dose regimes. In vitro spiking using physiological doses of omega-3 fatty acids was also performed to determine whether MEA is capable of detecting a platelet-inhibiting effect due to omega-3 fatty acids. Results There were no differences in platelet aggregation measured by the MEA assay in healthy volunteers after intake of either the normal or high dose of omega-3 fatty acids. In the in vitro experiment, a platelet-inhibiting effect of omega-3 fatty acids was shown by an arachidonic acid agonist in MEA . Conclusions Supplemental omega-3 fatty acids do not evoke their positive health effects through inhibition of platelet aggregation measurable with MEA.


Foods ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1811
Author(s):  
Ella Aitta ◽  
Alexis Marsol-Vall ◽  
Annelie Damerau ◽  
Baoru Yang

Baltic herring (Clupea harengus membras) is one of the most abundant commercially caught fish species from the Baltic Sea. Despite the high content of fat and omega-3 fatty acids, the consumption of Baltic herring has decreased dramatically over the last four decades, mostly due to the small sizes and difficulty in processing. At the same time there is an increasing global demand for fish and fish oil rich in omega-3 fatty acids. This study aimed to investigate enzyme-assisted oil extraction as an environmentally friendly process for valorizing the underutilized fish species and by-products to high quality fish oil for human consumption. Three different commercially available proteolytic enzymes (Alcalase®, Neutrase® and Protamex®) and two treatment times (35 and 70 min) were investigated in the extraction of fish oil from whole fish and by-products from filleting of Baltic herring. The oil quality and stability were studied with peroxide- and p-anisidine value analyses, fatty acid analysis with GC-FID, and volatile compounds with HS-SPME-GC-MS. Overall, longer extraction times led to better oil yields but also increased oxidation of the oil. For whole fish, the highest oil yields were from the 70-min extractions with Neutrase and Protamex. Protamex extraction with 35 min resulted in the best fatty acid composition with the highest content of eicosapentaenoic acid (EPA; 20:5n-3) and docosahexaenoic acid (DHA; 22:6n-3) but also increased oxidation compared to treatment with other enzymes. For by-products, the highest oil yield was obtained from the 70-min extraction with Protamex without significant differences in EPA and DHA contents among the oils extracted with different enzymes. Oxidation was lowest in the oil produced with 35-min treatment using Neutrase and Protamex. This study showed the potential of using proteolytic enzymes in the extraction of crude oil from Baltic herring and its by-products. However, further research is needed to optimize enzymatic processing of Baltic herring and its by-products to improve yield and quality of crude oil.


2015 ◽  
Vol 22 (3) ◽  
pp. 153-162 ◽  
Author(s):  
Juçara X. Zaparoli ◽  
Eduardo K. Sugawara ◽  
Altay A.L. de Souza ◽  
Sérgio Tufik ◽  
José Carlos F. Galduróz

Background: High oxidative stress, which is caused by smoking, can alter omega-3 fatty acid concentrations. Since omega-3 fatty acids play a role in dopaminergic neurotransmission related to dependence, it is important to understand their effects on nicotine dependence. Methods: This research comprised 2 studies. The first one consisted of a cross-sectional evaluation, in which the levels of the most important omega-3 fatty acids, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), were compared between smokers and non-smokers in a sample of 171 individuals; of them, 120 were smokers and 51 were non-smokers. The other study was a clinical, double-blind, randomized, placebo controlled, in which 63 smokers received daily treatment with capsules of fish oil (a source of omega-3/3 g/day) or mineral oil (used as placebo, also 3 g/day), taken 3 times a day for 90 days. Each fish oil capsules contained approximately 210.99 mg EPA and 129.84 mg of DHA. The outcome was evaluated by means of psychometric and biological measures as well as self-reports of tobacco use. The evaluations were carried out at the beginning of treatment and once a month thereafter (total of 4 times). Outcomes: The omega-3 fatty acid lipid profile showed that smokers present lower concentrations of DHA. After treatment, the omega-3 group showed a significant reduction in their levels of dependence. Interpretation: Smokers showed lower peripheral levels of omega-3, and treatment with the most important omega-3 fatty acids brought about a reduction in nicotine dependence.


Circulation ◽  
2014 ◽  
Vol 129 (suppl_1) ◽  
Author(s):  
Claire Newlon ◽  
Matthew Muldoon ◽  
Susan Sereika ◽  
Dora Kuan

Background: Greater consumption of omega-3 fatty acids has been associated with lower cardiovascular disease risk. Randomized controlled trials indicate direct, albeit small, beneficial effects of omega-3 fatty acids on plasma triglycerides and blood pressure, yet few studies have tested their impact on insulin resistance and the clustered risk factors comprising the metabolic syndrome. Hypothesis: Short-term supplementation with marine omega-3 polyunsaturated fatty acids, EPA (eicosapentaenoic acid) and DHA (docosahexaenoic acid) will improve aggregated cardiometabolic risk (CMR) in healthy middle-aged adults Methods: We conducted a double-blind, placebo-controlled, parallel group clinical trial. Subjects were 30-54 year-old adults free of atherosclerotic disease and diabetes whose intake of EPA and DHA totaled <300 mg/day. Each was randomly assigned to daily fish oil supplements (2g/day containing 1000 mg EPA and 400mg DHA) or matching soybean oil placebo for 18 weeks. Aggregate CMR at baseline and post-intervention was calculated as the standardized sum of standardized distributions of blood pressure, BMI, and fasting serum triglycerides, glucose, and HDL (reverse scored). Missing data due to dropouts (n=17) and outliers (1-6 per variable) were replaced by multivariate imputation. Outcome analyses were conducted with linear regressions of all randomized subjects based on intention-to-treat. Results: Participants were 272 healthy adult (57% (154 out of 272) women; 17% (47 out of 272) minority; mean age 42) Pittsburgh-area residents. At baseline, demographics, health parameters, physical activity and EPA and DHA consumption did not differ significantly between treatment groups. No overall treatment effect was found, whereas gender moderated the effects of treatment on CMR risk (gender, p=.001 and gender*treatment interaction term p=.011). In gender-specific analyses, supplementation lowered CMR risk relative to placebo in men(p=.036, effect size=.629, standard error (SE) =.282) but not women (p=.168, effect size .261, SE=.222). Of the individual CMR variables, only HDL-cholesterol in men revealed a significant improvement (p=.012). In men receiving placebo, HDL-cholesterol fell by 1.1 mg/dl, whereas in those receiving fish oil, HDL rose by 1.7 mg/dl. As has been noted in other samples, compared to women men had greater CMR and lower HDL-cholesterol. Conclusions: Increased intake of n-3 fatty acids over 4 months reduced CMR in healthy, mid-life men but not women. This finding may be due to poorer baseline CMR and HDL characteristic of men, or to gender differences in fatty acid metabolism. Further study of gender differences in cardiometabolic risk and fatty acid metabolism may lead to gender-tailored preventive interventions.


Nutrients ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 3198 ◽  
Author(s):  
Francesco Pecora ◽  
Federica Persico ◽  
Alberto Argentiero ◽  
Cosimo Neglia ◽  
Susanna Esposito

Viral infections are a leading cause of morbidity and mortality worldwide, and the importance of public health practices including handwashing and vaccinations in reducing their spread is well established. Furthermore, it is well known that proper nutrition can help support optimal immune function, reducing the impact of infections. Several vitamins and trace elements play an important role in supporting the cells of the immune system, thus increasing the resistance to infections. Other nutrients, such as omega-3 fatty acids, help sustain optimal function of the immune system. The main aim of this manuscript is to discuss of the potential role of micronutrients supplementation in supporting immunity, particularly against respiratory virus infections. Literature analysis showed that in vitro and observational studies, and clinical trials, highlight the important role of vitamins A, C, and D, omega-3 fatty acids, and zinc in modulating the immune response. Supplementation with vitamins, omega 3 fatty acids and zinc appears to be a safe and low-cost way to support optimal function of the immune system, with the potential to reduce the risk and consequences of infection, including viral respiratory infections. Supplementation should be in addition to a healthy diet and fall within recommended upper safety limits set by scientific expert bodies. Therefore, implementing an optimal nutrition, with micronutrients and omega-3 fatty acids supplementation, might be a cost-effective, underestimated strategy to help reduce the burden of infectious diseases worldwide, including coronavirus disease 2019 (COVID-19).


2021 ◽  
Vol 7 (4) ◽  
pp. 279-285
Author(s):  
Havvanur Yoldaş İlktaç ◽  
Nihal Büyükuslu ◽  
Cüneyd Parlayan

Polyamines play an important role in the maintenance of intestinal permeability. Therefore we aimed to determine the effects of probiotics and omega 3 fatty acids on serum polyamine levels in colitis. Fifty BALB/c mice were randomly grouped as normal, colitis with no treatment applied, colitis treated by probiotics (VSL#3), colitis treated by omega-3, and colitis treated by both probiotics and omega-3. Experimental colitis was induced by injection of 200 mg/kg 2,4-Dinitrobenzenesulfonic acid (DNBS). The probiotic and the omega-3 fatty acid supplements were applied daily by oral gavage. Serum polyamine levels were measured with high performance liquid chromatography (HPLC). In each group, the levels of serum polyamines are the highest in spermidine and the least in spermine. Bowel inflammation in experimentally induced colitis mice resulted in lower serum polyamine concentrations. In probiotic and omega 3 fatty acid supplemented group significant decreases were observed for spermine and spermidine (p<0.001), while no significant changes were obtained for putrescine. Combined supplementation of probiotics and omega-3 fatty acids for 10 days in colitis mice significantly decreased the serum levels of spermine and spermidine.


Sign in / Sign up

Export Citation Format

Share Document