scholarly journals Simple Video-Based Spatiotemporal Gait Analysis Is Not Better than Subjective Visual Assessment of Lameness in Dogs

VCOT Open ◽  
2021 ◽  
Vol 04 (01) ◽  
pp. e65-e71
Author(s):  
Julie H. Møller ◽  
Anne D. Vitger ◽  
Helle H. Poulsen ◽  
James E. Miles

Abstract Introduction Visual gait analysis is prone to subjectivity, but objective analysis systems are not widely available to clinicians. Simple video analysis using high-definition recordings might enable identification of temporal or spatial variations that could permit objective and repeatable assessments of lameness in general practice. Methods Cohorts of normal and mildly to moderately lame dogs were filmed using a standardized protocol. Using freely available software, measurements of stance, swing and stride time were obtained, along with measurements of pelvic, shoulder, and head height for each limb. Symmetry ratios were calculated, and distributions of normal and lame dogs compared using Mann–Whitney U test and Kruskal–Wallis test. Results Recordings from 35 normal dogs were assessed along with 30 dogs with grade 1 to 3/5 lameness. While no consistent significant differences in temporal characteristics could be found, head height asymmetry was significantly different between lame and normal dogs (p = 0.003), with pairwise comparison showing this difference was restricted to forelimb-lame dogs (p = 0.03). Conclusion While potentially useful for patient records, use of video recordings at walking speeds for simple spatiotemporal gait analysis does not appear to offer clinically significant advantages over visual gait analysis in a typical clinical population of lame dogs.

2021 ◽  
pp. 106002802199964
Author(s):  
Matthew D. Jones ◽  
Jonathan Clarke ◽  
Calandra Feather ◽  
Bryony Dean Franklin ◽  
Ruchi Sinha ◽  
...  

Background: In a recent human reliability analysis (HRA) of simulated pediatric resuscitations, ineffective retrieval of preparation and administration instructions from online injectable medicines guidelines was a key factor contributing to medication administration errors (MAEs). Objective: The aim of the present study was to use a specific HRA to understand where intravenous medicines guidelines are vulnerable to misinterpretation, focusing on deviations from expected practice ( discrepancies) that contributed to large-magnitude and/or clinically significant MAEs. Methods: Video recordings from the original study were reanalyzed to identify discrepancies in the steps required to find and extract information from the NHS Injectable Medicines Guide (IMG) website. These data were combined with MAE data from the same original study. Results: In total, 44 discrepancies during use of the IMG were observed across 180 medication administrations. Of these discrepancies, 21 (48%) were associated with an MAE, 16 of which (36% of 44 discrepancies) made a major contribution to that error. There were more discrepancies (31 in total, 70%) during the steps required to access the correct drug webpage than there were in the steps required to read this information (13 in total, 30%). Discrepancies when using injectable medicines guidelines made a major contribution to 6 (27%) of 22 clinically significant and 4 (15%) of 27 large-magnitude MAEs. Conclusion and Relevance: Discrepancies during the use of an online injectable medicines guideline were often associated with subsequent MAEs, including those with potentially significant consequences. This highlights the need to test the usability of guidelines before clinical use.


2018 ◽  
Vol 32 (8) ◽  
pp. 714-723 ◽  
Author(s):  
Laure Jacquemin ◽  
Giriraj Singh Shekhawat ◽  
Paul Van de Heyning ◽  
Griet Mertens ◽  
Erik Fransen ◽  
...  

Background. Contradictory results have been reported for transcranial direct current stimulation (tDCS) as treatment for tinnitus. The recently developed high-definition tDCS (HD tDCS) uses smaller electrodes to limit the excitation to the desired brain areas. Objective. The current study consisted of a retrospective part and a prospective part, aiming to compare 2 tDCS electrode placements and to explore effects of HD tDCS by matched pairs analyses. Methods. Two groups of 39 patients received tDCS of the dorsolateral prefrontal cortex (DLPFC) or tDCS of the right supraorbital–left temporal area (RSO-LTA). Therapeutic effects were assessed with the tinnitus functional index (TFI), a visual analogue scale (VAS) for tinnitus loudness, and the hyperacusis questionnaire (HQ) filled out at 3 visits: pretherapy, posttherapy, and follow-up. With a new group of patients and in a similar way, the effects of HD tDCS of the right DLPFC were assessed, with the tinnitus questionnaire (TQ) and the hospital anxiety and depression scale (HADS) added. Results. TFI total scores improved significantly after both tDCS and HD tDCS (DLPFC: P < .01; RSO-LTA: P < .01; HD tDCS: P = .05). In 32% of the patients, we observed a clinically significant improvement in TFI. The 2 tDCS groups and the HD tDCS group showed no differences on the evolution of outcomes over time (TFI: P = .16; HQ: P = .85; VAS: P = .20). Conclusions. TDCS and HD tDCS resulted in a clinically significant improvement in TFI in 32% of the patients, with the 3 stimulation positions having similar results. Future research should focus on long-term effects of electrical stimulation.


Author(s):  
Brendan J. Russo ◽  
Emmanuel James ◽  
Cristopher Y. Aguilar ◽  
Edward J. Smaglik

In the past two decades, cell phone and smartphone use in the United States has increased substantially. Although mobile phones provide a convenient way for people to communicate, the distraction caused by the use of these devices has led to unintended traffic safety and operational consequences. Although it is well recognized that distracted driving is extremely dangerous for all road users (including pedestrians), the potential impacts of distracted walking have not been as comprehensively studied. Although practitioners should design facilities with the safety, efficiency, and comfort of pedestrians in mind, it is still important to investigate certain pedestrian behaviors at existing facilities to minimize the risk of pedestrian–vehicle crashes, and to reduce behaviors that may unnecessarily increase delay at signalized intersections. To gain new insights into factors associated with distracted walking, pedestrian violations, and walking speed, 3,038 pedestrians were observed across four signalized intersections in New York and Arizona using high-definition video cameras. The video data were reduced and summarized, and an ordinary least squares (OLS) regression model was estimated to analyze factors affecting walking speeds. In addition, binary logit models were estimated to analyze both pedestrian distraction and pedestrian violations. Ultimately, several site- and pedestrian-specific variables were found to be significantly associated with pedestrian distraction, violation behavior, and walking speeds. The results provide important information for researchers, practitioners, and legislators, and may be useful in planning strategies to reduce or mitigate the impacts of pedestrian behavior that may be considered unsafe or potentially inefficient.


2021 ◽  
Vol 3 (1) ◽  
pp. 43-54
Author(s):  
Gabor Hollo

Background: In ophthalmology, thickness and vessel density (VD) measurements for the 6 x 6 mm inner macular retinal area have received increasing attention in glaucomatous progression research. For this area, the Angiovue optical coherence tomography system introduced a 304 x 304 A/B scans function (classic Angio Retina scan) in 2014, and a 400 x 400 A/B scans function (high-definition [HD] Angio Retina scan) in 2017. These scan types cannot be used in combination for the software provided for progression analysis.Purpose: Since losing data for 3 years may negatively influence progression analysis, we investigated whether clinically significant differences exist between consecutive measurements acquired with these scan types on the same eyes.Methods: As a part of our noninterventional prospective glaucoma imaging study, primary-open-angle glaucoma patients (POAG group), and ocular hypertensive and healthy control participants (structurally undamaged group) were imagedusing both the classic and the HD Angio Retina scans, respectively, without changing the patients’ position. High-quality images were obtained on 12 POAG eyes of 12 consecutive POAG patients, and 10 healthy and ocular hypertensive eyes of 10 consecutive participants before the data collection had to be suspended due to the new coronavirus epidemic.Results: For Early Treatment Diabetic Retinopathy Study image area, the mean difference (classic minus HD value) was 0.02 ± 0.37 μm for inner retinal thickness (P = 0.869) and 0.33 ± 1.33 % (P = 0.452) for superficial capillary VD in the structurally normal group (between-methods difference: ≤ 0.8% of the respective normal value). In the POAG group, the corresponding figures were -0.07 ± 1.22 μm for inner retinal thickness (P = 0.854; between-methods difference: 0.6% of the normal value) and 1.12 ± 2.58 % for superficial capillary VD (P = 0.158; classic scan value minus HD scan value: 1.12 ± 2.58 %; 2.3% of the normal value).Conclusion: Our results suggest that combined use of thickness and VD values for structurally normal eyes and thickness values for POAG eyes derived from classic and HD scans, respectively, for progression analysis can be reasonable since the differences between the corresponding values are small. However, combining the corresponding VD parameters for POAG eyes is useful only when the follow-up time before the scan type change is long enough to counterbalance the effect of the change on the result.  


Sensors ◽  
2021 ◽  
Vol 21 (21) ◽  
pp. 7381
Author(s):  
Charlotte Werner ◽  
Chris Awai Awai Easthope ◽  
Armin Curt ◽  
László Demkó

Spinal cord injury (SCI) patients suffer from diverse gait deficits depending on the severity of their injury. Gait assessments can objectively track the progress during rehabilitation and support clinical decision making, but a comprehensive gait analysis requires far more complex setups and time-consuming protocols that are not feasible in the daily clinical routine. As using inertial sensors for mobile gait analysis has started to gain ground, this work aimed to develop a sensor-based gait analysis for the specific population of SCI patients that measures the spatio-temporal parameters of typical gait laboratories for day-to-day clinical applications. The proposed algorithm uses shank-mounted inertial sensors and personalized thresholds to detect steps and gait events according to the individual gait profiles. The method was validated in nine SCI patients and 17 healthy controls walking on an instrumented treadmill while wearing reflective markers for motion capture used as a gold standard. The sensor-based algorithm (i) performed similarly well for the two cohorts and (ii) is robust enough to cover the diverse gait deficits of SCI patients, from slow (0.3 m/s) to preferred walking speeds.


Author(s):  
Y. T. Chen ◽  
H. K. Peng ◽  
C. T. Lu ◽  
L. H. Hsu ◽  
G. F. Huang ◽  
...  

Currently, rapid prototyping (RP) products are manufactured by layer-based process; this result may cause RP products to break easily along layers when a bending moment is applied. To prevent RP transtibial sockets from breaking, wrapping a layer of unsaturated polyester resin (UPR) around transtibial sockets to reinforce its flexural strength is proposed. To verify the applicability of resin-reinforced RP socket fabrication, two experimental systems, including a socket sensor measurement and gait analysis system, are used to obtain interface pressures between stump, socket and gait characteristics during stance phase while such type of prosthetic socket is used. A male volunteer with a left below-knee amputation, a twenty-year transtibial socket user, was selected for this study. In the experiments, sensors were pasted on the stump and measurement data was collected at different walking speeds. The results of these experiments showed that the interface pressures were concentrated on pressure-tolerant areas, and the swing phase and stride length of stump increased while the volunteer was walking at a fast speed. The resin-reinforced rapid prototyping sockets have better comfortable quality of fitting because the interface pressures are more concentrated on pressure-tolerant areas including the patella tendon and medial tibia flare while wearing the new type of sockets.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
David Kordek ◽  
Laura K. Young ◽  
Jan Kremláček

AbstractIn a low-cost laboratory setup, we compared visual acuity (VA) for stimuli rendered with Zernike aberrations to an equivalent optical dioptric defocus in emmetropic individuals using a relatively short observing distance of 60 cm. The equivalent spherical refractive error of + 1, + 2 or + 4 D, was applied in the rendering of Landolt Rings. Separately, the refractive error was introduced dioptrically in: (1) unchanged Landolt Rings with an added external lens (+ 1, + 2 or + 4 D) at the subject's eye; (2) same as (1) but with an added accommodation and a vertex distance adjustment. To compare all three approaches, we examined VA in 10 healthy men. Stimuli were observed on a PC CRT screen. For all three levels of refractive error, the pairwise comparison did not show a statistically significant difference between digital blur and accommodation-plus-vertex-distance-adjusted dioptric blur (p < 0.204). The best agreement, determined by Bland–Altman analysis, was measured for + 4 D and was in line with test–retest limits for examination in the clinical population. Our results show that even for a near observing distance, it is possible to use digitally rendered defocus to replicate dioptric blur without a significant change in VA in emmetropic subjects.


PLoS ONE ◽  
2021 ◽  
Vol 16 (6) ◽  
pp. e0252536
Author(s):  
T. J. P. Spoormakers ◽  
E. A. M. Graat ◽  
F. M. Serra Bragança ◽  
P. R. van Weeren ◽  
H. Brommer

Background Lameness assessment in horses is still predominantly performed using subjective methods. Visual assessment is known to have moderate to good intra-rater agreement but relatively poor inter-rater agreement. Little is known about inter- and intra-rater agreement on the evaluation of back motion, for which no objective measurement technique in a clinical setting is available thus far. Objectives To describe inter- and intra-rater agreement of visual evaluation of equine back mobility. Study design Rater reliability study using a fully crossed design in which all horses are rated by all observers. This data is compared with objective gait analysis. Methods Seventy equine professionals (veterinarians and physiotherapists) and veterinary students evaluated videos of 12 healthy horses at walk and trot on a hard, straight line. Nine parameters related to back mobility were scored: general mobility, thoracic, lumbar, lumbosacral flexion and extension and left and right thoracolumbar latero-flexion. All parameters were compared with simultaneously measured quantitative motion parameters. After 1 month, six randomly chosen horses were re-evaluated by 57 observers. Results For each parameter inter- and intra-rater agreements were calculated using intra-class correlation coefficients. For all parameters, inter-rater agreement was very poor (<0.2). The mean intra-rater agreement of all observers and for all parameters was poor (~0.4) but varied between 0.0 and 0.96 for individual observers. There was no correlation between the visual subjective scoring and objective gait analysis measurements. Main limitations Horses were scored from videos and by lack of any existing (semi-) quantitative system, a custom-made system had to be used. Conclusions The poor inter- and intra-rater agreements of visual scoring of mobility of the equine back and the disagreement between subjective and objective gait analysis data, demonstrate the need for the development and introduction of objective, quantitative and repeatable techniques to assess equine back motion.


Sign in / Sign up

Export Citation Format

Share Document