scholarly journals Metabolomic-Guided Isolation of Bioactive Natural Products from Curvularia sp., an Endophytic Fungus of Terminalia laxiflora

Planta Medica ◽  
2017 ◽  
Vol 84 (03) ◽  
pp. 182-190 ◽  
Author(s):  
Ahmed Tawfike ◽  
Grainne Abbott ◽  
Louise Young ◽  
RuAngelie Edrada-Ebel

AbstractEndophytic fungi associated with medicinal plants are a potential source of novel chemistry and biology. Metabolomic tools were successfully employed to compare the metabolite fingerprints of solid and liquid culture extracts of endophyte Curvularia sp. isolated from the leaves of Terminalia laxiflora. Natural product databases were used to dereplicate metabolites in order to determine known compounds and the presence of new natural products. Multivariate analysis highlighted the putative metabolites responsible for the bioactivity of the fungal extract and its fractions on NF-κB and the myelogenous leukemia cell line K562. Metabolomic tools and dereplication studies using high-resolution electrospray ionization mass spectrometry directed the fractionation and isolation of the bioactive components from the fungal extracts. This resulted in the isolation of N-acetylphenylalanine (1) and two linear peptide congeners of 1: dipeptide N-acetylphenylalanyl-L-phenylalanine (2) and tripeptide N-acetylphenylalanyl-L-phenylalanyl-L-leucine (3).

PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e10392
Author(s):  
Guodong Niu ◽  
Thirunavukkarasu Annamalai ◽  
Xiaohong Wang ◽  
Sheng Li ◽  
Stephen Munga ◽  
...  

Background Secondary fungal metabolites are important sources for new drugs against infectious diseases and cancers. Methods To obtain a library with enough diversity, we collected about 2,395 soil samples and 2,324 plant samples from 36 regions in Africa, Asia, and North America. The collection areas covered various climate zones in the world. We examined the usability of the global fungal extract library (GFEL) against parasitic malaria transmission, Gram-positive and negative bacterial pathogens, and leukemia cells. Results Nearly ten thousand fungal strains were isolated. Sequences of nuclear ribosomal internal transcribed spacer (ITS) from 40 randomly selected strains showed that over 80% were unique. Screening GFEL, we found that the fungal extract from Penicillium thomii was able to block Plasmodium falciparum transmission to Anopheles gambiae, and the fungal extract from Tolypocladium album was able to kill myelogenous leukemia cell line K562. We also identified a set of candidate fungal extracts against bacterial pathogens.


Diabetes ◽  
1985 ◽  
Vol 34 (4) ◽  
pp. 347-352 ◽  
Author(s):  
T. Yamanouchi ◽  
T. Tsushima ◽  
Y. Akanuma ◽  
M. Kasuga ◽  
H. Mizoguchi ◽  
...  

Blood ◽  
2000 ◽  
Vol 96 (3) ◽  
pp. 925-932 ◽  
Author(s):  
Michael C. Heinrich ◽  
Diana J. Griffith ◽  
Brian J. Druker ◽  
Cecily L. Wait ◽  
Kristen A. Ott ◽  
...  

Abstract STI 571 (formerly known as CGP 57148B) is a known inhibitor of the c-abl, bcr-abl, and platelet-derived growth-factor receptor (PDGFR) tyrosine kinases. This compound is being evaluated in clinical trials for the treatment of chronic myelogenous leukemia. We sought to extend the activity profile of STI 571 by testing its ability to inhibit the tyrosine kinase activity of c-kit, a receptor structurally similar to PDGFR. We treated a c-kit expressing a human myeloid leukemia cell line, M-07e, with STI 571 before stimulation with Steel factor (SLF). STI 571 inhibited c-kit autophosphorylation, activation of mitogen-activated protein (MAP) kinase, and activation of Akt without altering total protein levels of c-kit, MAP kinase, or Akt. The concentration that produced 50% inhibition for these effects was approximately 100 nmol/L. STI 571 also significantly decreased SLF-dependent growth of M-07e cells in a dose-dependent manner and blocked the antiapoptotic activity of SLF. In contrast, the compound had no effect on MAP kinase activation or cellular proliferation in response to granulocyte-macrophage colony-stimulating factor. We also tested the activity of STI 571 in a human mast cell leukemia cell line (HMC-1), which has an activated mutant form of c-kit. STI 571 had a more potent inhibitory effect on the kinase activity of this mutant receptor than it did on ligand-dependent activation of the wild-type receptor. These findings show that STI 571 selectively inhibits c-kit tyrosine kinase activity and downstream activation of target proteins involved in cellular proliferation and survival. This compound may be useful in treating cancers associated with increased c-kit kinase activity.


2004 ◽  
Vol 154 (1) ◽  
pp. 52-56 ◽  
Author(s):  
Hyuk-Chan Kwon ◽  
Sung-Hyun Kim ◽  
Jae-Seok Kim ◽  
Hoon Han ◽  
Mee Sook Roh ◽  
...  

Bionatura ◽  
2021 ◽  
Vol 6 (2) ◽  
pp. 1725-1732
Author(s):  
Hamdah Alsaeedi ◽  
Rowaid Qahwaji ◽  
Talal Qadah

Kola nut extracts have recently been reported to contain chemopreventive compounds providing several pharmacological benefits. This study investigated Kola nut extracts' anti-cancer activity on human immortalized myelogenous leukemia cell line K562 through apoptosis and cell cycle arrest. Fresh Kola nuts were prepared as powder and dissolved in DMSO. Different concentrations (50, 100, 150, 200, and 250 μg/ml) of working solutions were prepared. The K562 cells were treated with the different concentrations of Kola nut extract or vehicle control (10% DMSO) followed by incubation at 37°C for 24, 48, and 72 hours, respectively. Treatment activity was investigated in K562 cells; by Resazurin, and FITC/Propidium Iodide and 7-AAD stained cells to evaluate apoptotic cells and the cell cycle's progression. Inhibition of leukemia cell proliferation was observed. The extract effectively induced cell death, early and late apoptosis by approximately 30% after 24 and 48 hours incubation, and an increase in the rate of dead cells by 50% was observed after 72 hours of incubation. Also, cell growth reduction was seen at high dose concentrations (150 and 200 µg/ml), as evident by cell count once treated with Kola nut extract. The total number of apoptotic cells increased from 5.8% of the control group to 27.4% at 250 µg/ml concentration. Moreover, Kola nut extracts' effects on K562 cells increased gradually in a dose and time-dependent manner. It was observed that Kola nut extracts could arrest the cell cycle in the G2/M phase as an increase in the number of cells by 29.8% and 14.6 % were observed from 9.8% and 5.2% after 24 and 48 hours of incubation, respectively. This increase was detected in a dose and time-dependent manner. Kola nut extracts can be used as a novel anti-cancer agent in Leukemia treatment as it has shown significant therapeutic potential and therefore provides new insights in understanding the mechanisms of its action. Keywords: Kola nut extracts, Leukemia, K562 cell line, Apoptosis, Cancer.


Blood ◽  
1991 ◽  
Vol 77 (12) ◽  
pp. 2618-2623 ◽  
Author(s):  
R Gaynor ◽  
K Simon ◽  
P Koeffler

Abstract Cellular transcription factors are important in the regulation of cellular genes. Recent studies have indicated that a class of cellular genes known as early response genes are important in the control of cellular growth properties. Two of these genes, c-jun and c-fos, play an important role in the control of cellular differentiation. Because the acute myelogenous leukemia cell line, HL-60, is capable of differentiating to either macrophages or granulocytes, it provides a good model to understand differential gene expression. To determine if the modulation of c-jun was important in the differentiation of HL-60 cells to either macrophages or granulocytes, expression of c-jun mRNA was determined by Northern analysis at various times following treatment with a variety of differentiating agents, including 12- tetradeconyl-phorbol 13-acetate (TPA), retinoic acid (RA), dimethyl sulfoxide (DMSO), or 1,25 dihydroxyvitamin D3 [1,25 (OH)2 D3]. Both TPA and 1,25(OH)2D3, which induce HL-60 cells to differentiate to macrophages, resulted in marked increases in c-jun mRNA; while RA and DMSO, which induce HL-60 cells to differentiate to granulocytes, did not greatly alter c-jun mRNA expression. HL-60 cell lines resistant to macrophage differentiation after exposure to either 1,25(OH)2D3 or TPA did not result in increases in c-jun mRNA. These results suggest that elevation of c-jun mRNA in HL-60 cells correlated temporally with differentiation to macrophages. Thus, c-jun may be a critical cellular transcription factor involved in macrophage differentiation.


Blood ◽  
1984 ◽  
Vol 64 (5) ◽  
pp. 1103-1109 ◽  
Author(s):  
TA Rado ◽  
J Bollekens ◽  
G St. Laurent ◽  
L Parker ◽  
EJ Jr Benz

Abstract We examined the synthesis of lactoferrin, an iron binding protein that, among hematopoietic cells, is restricted to secondary granules of polymorphonuclear leukocytes. Lactoferrin biosynthesis was absent from leukemic myeloblasts and promyelocytes but abundant in normal bone marrow and both the bone marrow and peripheral blood of patients with chronic myelogenous leukemia (CGL) if the samples contained substantial numbers of myelocytes and metamyelocytes. Lactoferrin was present in the steady state in normal or CGL bands and polymorphonuclear leukocytes, but no lactoferrin biosynthesis was detectable in these samples. Taken together, these results suggest that lactoferrin accumulation begins with the onset of biosynthesis at the myelocyte stage and is largely complete by the beginning of the band stage of maturation. HL-60 cells, a permanent promyelocytic leukemia cell line, synthesized no lactoferrin. Translation of messenger RNA in Xenopus laevis oocytes revealed that mRNA from patients with chronic myelogenous leukemia and abundant myelocytes and metamyelocytes directed the synthesis of readily detectable amounts of lactoferrin, whereas HL-60 cells contained no translatable lactoferrin mRNA. We thus hypothesize that lactoferrin is a useful marker of gene expression restricted to the terminal stages of granulocyte maturation. Biosynthesis of this protein appears to be mediated by appearance of translatable mRNA at the myelocyte stage, coincident with development of secondary granules. Absence of lactoferrin production by HL-60 cells is due to absence of translatable lactoferrin mRNA, either because of lineage infidelity of these transformed cells or because of arrest before the developmental stage at which secondary granules appear.


Blood ◽  
1975 ◽  
Vol 45 (3) ◽  
pp. 321-334 ◽  
Author(s):  
CB Lozzio ◽  
BB Lozzio

Abstract A cell-line derived from a patient with chronic myelogenous leukemia (CML) is described. The new cell-line, which has over 175 serial passanges in a 3 1/2-yr period, has the following characteristics: (1) CML cells started to proliferate actively since they were first incubated in culture media. A threefold increase in the total number of cells was observed during the first seven passages; the cell population increased by a factor of 10 to 20 every 7 days from passage 8 through 85; from 20 to 40 times from passage 86 through 150, and more than 40 times after 150 passages. (2) The majority of the nononucleated cells are undifferentiated blasts. (3) The karyotype of all the cells examined show the Philadelphia (Ph1) chromosome and a long acrocentric marker plus aneuploidy. The Giemsa-banding studies identified the Ph1 chromosome as a terminal deletion of the long arm of chromosome 22:del(22)(q12) and the long acrocentric marker as an unbalanced reciprocal translocation of one chromosome 17 and the long arm of one chromosome 15. (4) The CML cells do not produce immunoglobulins, are free of mycoplasma, Epstein-Barr virus, and herpes-like virus particles. (5) CML cells have no alkaline phosphatase and myeloperoxidase activities and did not engulf inert particles. (6) Cultured CML cells provide a constant source of a specific antigen. This CML cell-line represents a unique source of CML cells with meaningful indicators of malignancy for clinical and experimental studies.


Blood ◽  
1993 ◽  
Vol 81 (3) ◽  
pp. 793-800 ◽  
Author(s):  
RM Lemoli ◽  
T Igarashi ◽  
M Knizewski ◽  
L Acaba ◽  
A Richter ◽  
...  

Abstract We evaluated the potential role of photoradiation therapy with a benzoporphyrin derivative, monoacid ring A (BPD-MA), and dihematoporphyrin ether (DHE), for the ex vivo purging of residual tumor cells from autologous bone marrow (BM) grafts. BPD-MA and DHE photosensitizing activity was tested against two human large-cell lymphoma cell lines and colony-forming unit-leukemia (CFU-L) derived from patients with acute myelogenous leukemia (AML). In mixing experiments, 4-log elimination of tumor cell lines was observed after 1 hour of incubation with 75 ng/mL of BPD-MA or 30 minutes of treatment with 12.5 micrograms/mL of DHE followed by white light exposure. By comparison, using the same concentration of BPD-MA, the mean recovery of normal BM progenitors was 4% +/- 0.8% (mean +/- SD) for granulocyte- macrophage colony-forming unit (CFU-GM) and 5% +/- 0.8% for burst- forming unit-erythroid (BFU-E). Similarly, DHE treatment resulted in the recovery of 5.2% +/- 2% and 9.8% +/- 3% of CFU-GM and BFU-E, respectively. Furthermore, equivalently cytotoxic concentrations of both DHE and BPD-MA and light were found not to kill normal pluripotent stem cells in BM, as demonstrated by their survival in two-step long- term marrow culture at levels equal to untreated controls. The T- lymphoblastic leukemia cell line CEM and its vinblastine (VBL)- resistant subline CEM/VBL, along with the acute promyelocyte leukemia cell line HL-60 and its vincristine (VCR)-resistant subline HL-60/VCR, were also tested. BPD-MA at 75 ng/mL was able to provide a greater than 4-log elimination of the drug-sensitive cell lines, but only a 34% and 55% decrease of the drug-resistant HL-60/VCR and CEM/VBL cell lines, respectively. On the contrary, 12.5 micrograms/mL of DHE reduced the clonogenic growth of all the cell lines by more than 4 logs. Further experiments demonstrated decreased uptake of both BPD-MA and DHE by the resistant cell lines. However, all the cell lines took up more DHE than BPD-MA under similar experimental conditions. Our results demonstrate the preferential cytotoxicity of BPD-MA and DHE toward neoplastic cell lines and CFU-L from AML patients. In addition, DHE was slightly more effective in purging tumor cells expressing the p-170 glycoprotein. These results suggest that photoradiation with DHE would be useful for in vitro purging of residual drug-resistant leukemia and lymphoma cells.


Sign in / Sign up

Export Citation Format

Share Document