Preliminary Investigation of Local Failure Modes in Steel-Plate Composite Walls Subjected to Missile Impact

Author(s):  
Joo Min Kim ◽  
Jakob Bruhl ◽  
Jungil Seo ◽  
Amit Varma
2019 ◽  
Vol 22 (8) ◽  
pp. 1895-1908
Author(s):  
Fangfang Wei ◽  
Zejun Zheng ◽  
Jun Yu ◽  
Yongquan Wang

Concrete filled double-steel-plate composite walls with shear studs, one type of steel–concrete–steel walls, are recently developed and have been used in high-rise buildings, for which fire safety is a big concern. In order to investigate the fire endurance of this new type of concrete filled double-steel-plate composite walls, three specimens with different axial compression ratios and different lengths and intervals of shear studs were tested under one-side ISO-834 standard fire to obtain the temperature distribution, deformation, and detailed failure modes. Each specimen consisted of a concrete filled double-steel-plate composite wall-body and two boundary columns. Moreover, finite-element-based numerical investigations were conducted to confirm and extend experimental findings. All the concrete filled double-steel-plate composite walls failed in compression–flexure mode with the local buckling at the compressive steel plate. The results indicate that the fire endurance of concrete filled double-steel-plate composite walls is significantly affected by the axial compression ratio, the eccentricity of the axial load, and the bond strength between shear studs and concrete. Axial compression ratio, defined as the ratio of axial compression to the nominal compressive capacity of concrete filled double-steel-plate composite walls, has both positive and negative effects on the fire endurance of concrete filled double-steel-plate composite walls. The axial load eccentricity toward the unexposed side is much more detrimental to the fire endurance of concrete filled double-steel-plate composite walls than the one toward the exposed side. In engineering practice, it is recommended that proper intervals (not greater than 300 mm) and lengths (not less than 40 mm) of the shear studs should be used to ensure the bond between concrete and steel plates.


2016 ◽  
Vol 10 (01) ◽  
pp. 1650001 ◽  
Author(s):  
Yue Yang ◽  
Jingbo Liu ◽  
Xin Nie ◽  
Jiansheng Fan

Three steel-plate composite walls were tested under reversal loads. The primary purpose of this experiment was to investigate the out-of-plane behavior of steel-plate composite walls under seismic actions, including the failure modes, hysteretic behavior, strength, and stiffness while emphasizing the effects of shear span, connection details, and thickness of the steel plates. All specimens showed some pinching effect in the hysteresis loops. Both shear failure and flexural failure occurred in the tests depending on the shear span and steel plate thickness of the specimens. All surface steel plates of the specimens remained unbuckled before yielding during the loading process, which indicated that the ratio of connector spacing to surface steel plate thickness adopted for the specimens satisfied the requirement of yielding before buckling. The test results also showed that the tie bars contributed significantly to the out-of-plane shear strength of the steel-plate composite walls.


2020 ◽  
Vol 26 (3) ◽  
pp. 227-246
Author(s):  
Qi Ge ◽  
Tao He ◽  
Feng Xiong ◽  
Peng Zhao ◽  
Yang Lu ◽  
...  

Reverse cyclic lateral testing was undertaken to investigate the seismic behavior of 1/4 scale steel-plate concrete (SC) composite walls. The experimental program involved seven SC wall pier specimens. A new chamber structure is proposed, using steel diaphragms to connect the two steel faceplates to each other and to divide the SC wall pier into two parts. Conventional wall specimens failed mainly by tensile fracture of the concrete at the junction of the wall side and wall base, crushing of the concrete at the toe of the wall, or buckling of the steel faceplate. Tearing of the welded joints at the steel faceplates and steel diaphragm, buckling of steel, steel diaphragms being pulled out, tensile fracture and crushing of the concrete were the main failure modes of the chamber structure walls. A parametric numerical analysis in ABAQUS was developed to investigate the effects of the stiffening rib, steel web amount, material strength, shear-span ratio, and axial compression ratio on the seismic response of SC walls. The chamber structure of the SC wall piers can improve the peak load, ductility, and energy-dissipating capacity. The steel faceplate thickness and stiffening ribs can improve the behavior of SC wall piers.


Author(s):  
Yoshihito Yamamoto ◽  
Soichiro Okazaki ◽  
Hikaru Nakamura ◽  
Masuhiro Beppu ◽  
Taiki Shibata

In this paper, numerical simulations of reinforced mortar beams subjected to projectile impact are conducted by using the proposed 3-D Rigid-Body-Spring Model (RBSM) in order to investigate mechanisms of crack propagation and scabbing mode of concrete members under high-velocity impact. The RBSM is one of the discrete-type numerical methods, which represents a continuum material as an assemblage of rigid particle interconnected by springs. The RBSM have advantages in modeling localized and oriented phenomena, such as cracking, its propagation, frictional slip and so on, in concrete structures. The authors have already developed constitutive models for the 3D RBSM with random geometry generated Voronoi diagram in order to quantitatively evaluate the mechanical responses of concrete including softening and localization fractures, and have shown that the model can simulate cracking and various failure modes of reinforced concrete structures. In the target tests, projectile velocity is set 200m/s. The reinforced mortar beams with or without the shear reinforcing steel plates were used to investigate the effects of shear reinforcement on the crack propagation and the local failure modes. By comparing the numerical results with the test results, it is confirmed that the proposed model can reproduce well the crack propagation and the local failure behaviors. In addition, effects of the reinforcing plates on the stress wave and the crack propagation behaviors are discussed from the observation of the numerical simulation results. As a result, it was found that scabbing of reinforced mortar beams subjected to high velocity impact which is in the range of the tests is caused by mainly shear deformation of a beam.


Author(s):  
Mahmood Nabipour ◽  
Mostafa Zeinoddini ◽  
Mahmood R. Abdi

The pull-out performance of conventional upright suction caissons has been investigated by different researchers. However, no attention has been formerly paid to tapered suction caissons. Some numerical studies already conducted by the authors demonstrated that tapered caissons exhibit pull-out capacities well above than that from their corresponding upright caissons. This paper deals with different failure mechanisms of tapered suction caissons and discusses some reason for their superior performance. A numerical approach has been used and different combinations of caisson types/ soil categories have been examined. With tapered suction caissons two different modes of failure have been discerned. The first mode has been noticed to develop in weak clays and sands under drained conditions. This mode corresponds to a shear sliding failure in the soil plug along the caisson’s interior wall. Concurrently a soil wedge is formed in the soil body adjacent to the caisson. The second mode of failure has been observed in higher strength drained clays and undrained clays and sands. With this failure mode a local failure at the bottom of the soil plug has been noticed to happen. At the same time the failure is extended to the lower surfaces of a soil wedge outside of the caisson. The detached soil plug accompanies the caisson in its movement upward following the local failure.


Author(s):  
Naoto Kasahara ◽  
Izumi Nakamura ◽  
Hideo Machida ◽  
Hitoshi Nakamura ◽  
Koji Okamoto

As the important lessons learned from the Fukushima-nuclear power plant accident, mitigation of failure consequences and prevention of catastrophic failure became essential against severe accident and excessive earthquake conditions. To improve mitigation measures and accident management, clarification of failure behaviors with locations is premise under design extension conditions such as severe accidents and earthquakes. Design extension conditions induce some different failure modes from design conditions. Furthermore, best estimation for these failure modes are required for preparing countermeasures and management. Therefore, this study focused on identification of failure modes under design extension conditions. To observe ultimate failure behaviors of structures under extreme loadings, new experimental techniques were adopted with simulation materials such as lead and lead-antimony alloy, which has very small yield stress. Postulated failure modes of main components under design extension conditions were investigated according three categories of loading modes. The first loading mode is high temperature and internal pressure. Under this mode, ductile fracture and local failure were investigated. At the structural discontinuities, local failure may become dominant. The second is high temperature and external pressure loading mode. Buckling and fracture were investigated. Buckling occurs however hardly break without additional loads or constraints. The last loading is excessive earthquake. Ratchet deformation, collapse, and fatigue were investigated. Among them, low-cycle fatigue is dominant.


2019 ◽  
Vol 2019 ◽  
pp. 1-14
Author(s):  
He Zhang ◽  
Kai Wu ◽  
Chao Xu ◽  
Lijian Ren ◽  
Feng Chen

Two columns of thin-walled concrete-filled steel tubes (CFSTs), in which tube seams are connected by self-tapping screws, are axial compression tested and FEM simulated; the influence of local buckling on the column compression bearing capacity is discussed. Failure modes of square thin-wall CFST columns are, first, steel tube plate buckling and then the collapse of steel and concrete in some corner edge areas. Interaction between concrete and steel makes the column continue to withstand higher forces after buckling appears. A large deflection analysis for tube elastic buckling reflects that equivalent uniform stress of the steel plate in the buckling area can reach yield stress and that steel can supply enough designing stress. Aiming at failure modes of square thin-walled CFST columns, a B-type section is proposed as an improvement scheme. Comparing the analysis results, the B-type section can address both the problems of corner collapse and steel plate buckling. This new type section can better make full use of the stress of the concrete material and the steel material; this type section can also increase the compression bearing capacity of the column.


2019 ◽  
Vol 10 (1) ◽  
pp. 94 ◽  
Author(s):  
Shatha Alasadi ◽  
Zainah Ibrahim ◽  
Payam Shafigh ◽  
Ahad Javanmardi ◽  
Karim Nouri

This study presents an experimental investigation and finite element modelling (FEM) of the behavior of over-reinforced simply-supported beams developed under compression with a bolt-compression steel plate (BCSP) system. This study aims to avoid brittle failure in the compression zone by improving the strength, strain, and energy absorption (EA) of the over-reinforced beam. The experimental program consists of a control beam (CB) and three BCSP beams. With a fixed steel plate length of 1100 mm, the thicknesses of the steel plates vary at the top section. The adopted plate thicknesses were 6 mm, 10 mm, and 15 mm, denoted as BCSP-6, BCSP-10, and BCSP-15, respectively. The bolt arrangement was used to implement the bonding behavior between the concrete and the steel plate when casting. These plates were tested under flexural-static loading (four-point bending). The load-deflection and EA of the beams were determined experimentally. It was observed that the load capacity of the BCSP beams was improved by an increase in plate thickness. The increase in load capacity ranged from 73.7% to 149% of the load capacity of the control beam. The EA was improved up to about 247.5% in comparison with the control beam. There was also an improvement in the crack patterns and failure modes. It was concluded that the developed system has a great effect on the parameters studied. Moreover, the prediction of the concrete failure characteristics by the FE models, using the ABAQUS software package, was comparable with the values determined via the experimental procedures. Hence, the FE models were proven to accurately predict the concrete failure characteristics.


2020 ◽  
Vol 10 (3) ◽  
pp. 822 ◽  
Author(s):  
Shatha Alasadi ◽  
Payam Shafigh ◽  
Zainah Ibrahim

The purpose of this paper is to investigate the flexural behavior of over-reinforced concrete beam enhancement by bolted-compression steel plate (BCSP) with normal reinforced concrete beams under laboratory experimental condition. Three beams developed with steel plates were tested until they failed in compression compared with one beam without a steel plate. The thicknesses of the steel plates used were 6 mm, 10 mm, and 15 mm. The beams were simply supported and loaded monotonically with two-point loads. Load-deflection behaviors of the beams were observed, analyzed, and evaluated in terms of spall-off concrete loading, peak loading, displacement at mid-span, flexural stiffness (service and post-peak), and energy dissipation. The outcome of the experiment shows that the use of a steel plate can improve the failure modes of the beams and also increases the peak load and flexural stiffness. The steel development beams dissipated much higher energies with an increase in plate thicknesses than the conventional beam.


Sign in / Sign up

Export Citation Format

Share Document