Surface-roughness correlations in homoepitaxial growth of GaN(0001) films by NH3 supersonic jet epitaxy

2004 ◽  
Vol 96 (8) ◽  
pp. 4556-4562 ◽  
Author(s):  
Nicholas A. Smith ◽  
H. Henry Lamb ◽  
Arthur J. McGinnis ◽  
Robert F. Davis
1996 ◽  
Vol 449 ◽  
Author(s):  
L.J. Lauhon ◽  
S. A. Ustin ◽  
W. Ho

ABSTRACTAlN, GaN, and SiC thin films were grown on 100 mm diameter Si(111) and Si(100) substrates using Supersonic Jet Epitaxy (SJE). Precursor gases were seeded in lighter mass carrier gases and free jets were formed using novel slit-jet apertures. The jet design, combined with substrate rotation, allowed for a uniform flux distribution over a large area of a 100 mm wafer at growth pressures of 1–20 mTorr. Triethylaluminum, triethylgailium, and ammonia were used for nitride growth, while disilane, acetylene, and methylsilane were used for SiC growth. The films were characterized by in situ optical reflectivity, x-ray diffraction (XRD), atomic force microscopy (AFM), and spectroscopic ellipsometry (SE).


1998 ◽  
Vol 42 (12) ◽  
pp. 2321-2327 ◽  
Author(s):  
S.A. Ustin ◽  
C. Long ◽  
W. Ho

1995 ◽  
Vol 395 ◽  
Author(s):  
Peter E. Norris ◽  
Long D. Zhu ◽  
H. Paul Maruska ◽  
Wilson HO ◽  
Scott Ustin ◽  
...  

ABSTRACTGaN was grown by supersonic jet epitaxy(SSJE), seeding triethylgallium in helium carrier gas. Activated nitrogen was supplied by a microwave plasma source. Single crystalline GaN films were deposited on the Si-face 6H-SiC and the c-plane sapphire substrates at 600–670°C. A cubic SiC buffer layer was grown onSi(111) at 800°C by SSJE using dichlorosilane, acetylene, and a high quality GaN crystal was grown on this template at 630°C. The materials high quality was proved by hard rectifying characteristics of a diode with an N-GaN/β-SiC/P-Si(111) structure.


1997 ◽  
Vol 178 (1-2) ◽  
pp. 134-146 ◽  
Author(s):  
B.A. Ferguson ◽  
C.B. Mullins

2017 ◽  
Vol 24 (02) ◽  
pp. 1750019 ◽  
Author(s):  
A. HASSANI ◽  
A. MAKAN ◽  
K. SBIAAI ◽  
A. TABYAOUI ◽  
A. HASNAOUI

Homoepitaxial growth film for (001), (110) and (111) Ni substrates is investigated by means of molecular dynamics (MD) simulation. Embedded atom method (EAM) is considered to represent the interaction potential between nickel atoms. The simulation is performed at 300[Formula: see text]K using an incident energy of 0.06[Formula: see text]eV. In this study, the deposition process is performed periodically and the period, [Formula: see text], is relative to a perfect layer filling. The coverage rate of the actual expected level, [Formula: see text], can be considered a determinant for thin-film growth of nickel. The [Formula: see text] level is the most filled level during the deposition on (001) substrate, while it is the less filled one in the case of (111) substrate. Moreover, the upper level is the one which is responsible for the surface roughness and the appearance time of an upper layer may also be a factor influencing the surface roughness. The deposition on (111) substrate induces the most rigorous surface with a rapid appearance time of the upper layers. The [Formula: see text] layers are almost completely filled for all substrates. The [Formula: see text] and lower layers are completely filled for (001) and (110) substrates while for (111) substrate the completely filled layers are [Formula: see text] and lower ones.


1997 ◽  
Vol 482 ◽  
Author(s):  
S. A. Ustin ◽  
W. Ho

AbstractGaN films have been grown atop SiC intermediate layers on Si(001) and Si(111) substrates using supersonic jet epitaxy (SJE). GaN growth temperatures ranged between 600 °C and 775 °C. Methylsilane (H3SiCH3) was used as the single source precursor for SiC growth and triethylgallium (TEG) and ammonia (NH 3) were the sources for GaN epitaxy. The GaN growth rate was found to depend strongly on substrate orientation, growth temperature, and flux. Structural characterization of the films was done by transmission electron diffraction (TED) and x-ray diffraction (XRD). Growth of GaN on SiC(002) produces a cubic or mixed phase of cubic and wurtzite depending on growth conditions. Growth on SiC(111) produces predominantly wurtzite GaN(0002). Minimum rocking curve widths for GaN(0002) on SiC/Si(111) and GaN(002) on SiC/Si(001) are 0.6° and 1.5°, respectively. Cross Sectional Transmission Electron Microscopy (XTEM) was also performed.


Sign in / Sign up

Export Citation Format

Share Document