scholarly journals In-situ tuning threshold voltage of field-effect transistors based on blends of poly(3-hexylthiophene) with an insulator electret

2015 ◽  
Vol 107 (6) ◽  
pp. 063301 ◽  
Author(s):  
Guanghao Lu ◽  
Norbert Koch ◽  
Dieter Neher
2021 ◽  
pp. 2101036
Author(s):  
Jiali Yi ◽  
Xingxia Sun ◽  
Chenguang Zhu ◽  
Shengman Li ◽  
Yong Liu ◽  
...  

2008 ◽  
Vol 47 (4) ◽  
pp. 3189-3192 ◽  
Author(s):  
Chang Bum Park ◽  
Takamichi Yokoyama ◽  
Tomonori Nishimura ◽  
Koji Kita ◽  
Akira Toriumi

1989 ◽  
Vol 161 ◽  
Author(s):  
D.L. Dreifus ◽  
R.M. Kolbas ◽  
B.P. Sneed ◽  
J.F. Schetzina

ABSTRACTLow temperature (<60° C) processing technologies that avoid potentially damaging processing steps have been developed for devices fabricated from II-VI semiconductor epitaxial layers grown by photoassisted molecular beam epitaxy (MBE). These low temperature technologies include: 1) photolithography (1 µm geometries), 2) calibrated etchants (rates as low as 30 Å/s), 3) a metallization lift-off process employing a photoresist profiler, 4) an interlevel metal dielectric, and 5) an insulator technology for metal-insulator-semiconductor (MIS) structures. A number of first demonstration devices including field-effect transistors and p-n junctions have been fabricated from II-VI epitaxial layers grown by photoassisted MBE and processed using the technology described here. In this paper, two advanced device structures, processed at <60° C, will be presented: 1) CdTe:As-CdTe:In p-n junction detectors, grown in situ by photoassisted MBE, and 2) HgCdTe-HgTe-CdZnTe quantum-well modulation-doped field-effect transistors (MODFETs).


2013 ◽  
Vol 28 (4) ◽  
pp. 415-421 ◽  
Author(s):  
Milic Pejovic

The gamma-ray irradiation sensitivity to radiation dose range from 0.5 Gy to 5 Gy and post-irradiation annealing at room and elevated temperatures have been studied for p-channel metal-oxide-semiconductor field effect transistors (also known as radiation sensitive field effect transistors or pMOS dosimeters) with gate oxide thicknesses of 400 nm and 1 mm. The gate biases during the irradiation were 0 and 5 V and 5 V during the annealing. The radiation and the post-irradiation sensitivity were followed by measuring the threshold voltage shift, which was determined by using transfer characteristics in saturation and reader circuit characteristics. The dependence of threshold voltage shift DVT on absorbed radiation dose D and annealing time was assessed. The results show that there is a linear dependence between DVT and D during irradiation, so that the sensitivity can be defined as DVT/D for the investigated dose interval. The annealing of irradiated metal-oxide-semiconductor field effect transistors at different temperatures ranging from room temperature up to 150?C was performed to monitor the dosimetric information loss. The results indicated that the dosimeters information is saved up to 600 hours at room temperature, whereas the annealing at 150?C leads to the complete loss of dosimetric information in the same period of time. The mechanisms responsible for the threshold voltage shift during the irradiation and the later annealing have been discussed also.


2019 ◽  
Vol 7 (29) ◽  
pp. 8855-8860 ◽  
Author(s):  
Janghyuk Kim ◽  
Marko J. Tadjer ◽  
Michael A. Mastro ◽  
Jihyun Kim

The threshold voltage of β-Ga2O3 metal–insulator–semiconductor field-effect transistors is controlled via remote fluorine plasma treatment, enabling an enhancement-mode operation under double gate condition.


Sign in / Sign up

Export Citation Format

Share Document