Effect of micro-silica fume and fly ash as a partial replacement of cement on fresh and early strength properties of concrete

2018 ◽  
Author(s):  
Khalid M. Breesem ◽  
Salim H. Jassam ◽  
Amar A. Hussein ◽  
Omar S. Dahham ◽  
N. Z. Noriman ◽  
...  
2018 ◽  
Vol 64 (1) ◽  
pp. 117-131 ◽  
Author(s):  
K.V.S.Gopala Krishna Sastry ◽  
A. Ravitheja ◽  
T.Chandra Sekhara Reddy

Abstract Foundry sand waste can be utilized for the preparation of concrete as a partial replacement of sand. The strength properties of M25 grade concrete are studied with different percentages of replacement of fine aggregates by foundry sand at 0%, 10%, 20%, 30%, 40%, and 50%. The optimum percentage of foundry sand replacement in the concrete corresponding to maximum strength will be identified. Keeping this optimum percentage of foundry sand replacement as a constant, a cement replacement study with mineral admixtures such as silica fume (5%, 7.5%, 10%) and fly ash (10%, 15%, 20%,) is carried out separately. The maximum increase in strength properties as compared to conventional concrete was achieved at 40% foundry sand replacement. Test results indicated that a 40% replacement of foundry sand with silica fume showed better performance than that of fly ash. The maximum increase in strengths was observed in a mix consisting of 40% foundry sand and 10% silica fume. SEM analysis of the concrete specimens also reveals that a mix with 40% foundry sand and 10% silica fume obtained the highest strength properties compared to all other mixes due to the creation of more C-H-S gel formations and fewer pores.


Nowadays there is an increase in environmental knowledge and its effects on the environment, the disposal of waste products from industries are being big deal to manage. Such waste materials cannot be dumped on any lands, due to this reason it is difficult to manage waste materials. After so many investigations finally conclude that waste material can be utilized in the construction as additives, such materials can reduce the cost of construction and gives more strength compared to conventional concrete. These products can be utilized to partial replacement of cement. In this investigation, we are using Silica fume/ Micro silica as a partial replacement of cement. From this combination, we can improve the strength, workability and resist cracks in concrete. To reduce water content PAR PLAST SPL super plasticizer is used. The present investigation is to determine the strength behavior of Silica fume/Micro silica and fibres in Rigid pavement. The concrete mix design is as per IRC 44 2009, and it is proportioned to set target mean strength as 40 Mpa. The water-cement ratio as per mix design is 0.38. Specimens was casted and cured for various percentages that are 0%, 2.5%, 5%, 7.5% and 10%. With this constant percentage of fibres was added that is 1% Polypropylene fibre and 0.5% Glass fibre. This specimen tested for 3, 7, 28 days for cubes and 7, 28 days for beams and cylinders. From this investigation, Cement can be replaced with Micro silica to improve strength properties like bending and tensile strength. The Silica fume/ micro silica found at 7.5% optimum dosage, up to this percentage cement can be replaced.


Concrete is the most essential construction materials in all over the world. It is necessary to search the cheaply obtainable material as admixture which might be partially replaced cement in the production of concrete. This project is an experimental investigation of the neem leaves ash as partial replacement for cement also fly ash is used for partial replacement of cement. The neem leaves were dried, burnt and heated in the furnace to produce Neem leaves Ash, which was discovered to posses Pozzolanic properties.the ordinary Portland cement was replaced by neem ash by 5%,10%,15%,20% and 25% by weight also flash replaced by 15%,20%,25% and 30% the cubes were crushed to know the comparative strength of the concrete at different curing days. The last result showed that workability and strength properties of the concrete was depended on water cement ratio, total days of curing, the percentage of replacement of Neem leaves ash for OPC . I. This project it was noticed that the result of 5% NLA and 15% fly ash and 10% NLA and 20% of fly ash were gradually increasing the strength at 28 days. Neem leaves play a vital role and behaviour of Neem leaves ash and flash used concrete will be studied


Reactive powder concrete (RPC) is the ultra-high strength concrete made by cementitious materials like silica fumes, cement etc. The coarse aggregates are completely replaced by quartz sand. Steel fibers which are optional are added to enhance the ductility. Market survey has shown that micro-silica is not so easily available and relatively costly. Therefore an attempt is made to experimentally investigate the reduction of micro-silica content by replacing it with fly-ash and mechanical properties of modified RPC are investigated. Experimental investigations show that compressive strength decreases gradually with addition of the fly ash. With 10 per cent replacement of micro silica, the flexural and tensile strength showed 40 and 46 per cent increase in the respective strength, though the decrease in the compressive strength was observed to be about 20 per cent. For further percentage of replacement, there was substantial drop in compressive, flexural as well as tensile strength. The experimental results thereby indicates that utilisation of fly-ash as a partial replacement to micro silica up to 10 per cent in RPC is feasible and shows quite acceptable mechanical performance with the advantage of utilisation of fly-ash in replacement of micro-silica.


2003 ◽  
Vol 9 (4) ◽  
pp. 271-279 ◽  
Author(s):  
Hau-yan Leung ◽  
Ramapillai V. Balendran

This paper summarises experimental results of some fresh concrete tests. Polypropylene fibres were added to the concrete mix to produce fibre reinforced concrete. Pozzolanic materials, including pulverised fly ash and silica fume, were used as partial replacement of cement, and their effects on the fresh fibre concrete were reported. Test results showed that the polypropylene fibre reduced the concrete workability significantly by thixotropic effect and decreased the setting time. Substitution of pozzolans also greatly affected the properties. The presence of fly ash increased the workability and setting time but in the presence of silica fume a reverse trend was observed. Empirical equations were proposed.


Author(s):  
Aikot Pallikkara Shashikala ◽  
Praveen Nagarajan ◽  
Saranya Parathi

Production of Portland cement causes global warming due to the emission of greenhouse gases to the environment. The need for reducing the amount of cement is necessary from sustainability point of view. Alkali activated and geopolymeric binders are used as alternative to cement. Industrial by-products such as fly ash, ground granulated blast furnace slag (GGBS), silica fume, rice husk ash etc. are commonly used for the production of geopolymer concrete. This paper focuses on the development of geopolymer concrete from slag (100% GGBS). Effect of different cementitious materials such as lime, fly ash, metakaolin, rice husk ash, silica fume and dolomite on strength properties of slag (GGBS) based geopolymer concrete are also discussed. It is observed that the addition of dolomite (by-products from rock crushing plants) into slag based geopolymer concrete reduces the setting time, enhances durability and improves rapidly the early age strength of geopolymer concrete. Development of geopolymer concrete with industrial by-products is a solution to the disposal of the industrial wastes. The quick setting concrete thus produced can reduce the cost of construction making it sustainable also.


2019 ◽  
Vol 9 (9) ◽  
pp. 1049-1054
Author(s):  
Yunxia Lun ◽  
Fangfang Zheng

This study is aimed at exploring the effect of steel slag powder (SSP), fly ash (FA), and silica fume (SF) on the mechanical properties and durability of cement mortar. SSP, SF, and FA were used as partial replacement of the Ordinary Portland cement (OPC). It was showed that the compressive and bending strength of steel slag powder were slightly lower than that of OPC. An increase in the SSP content caused a decrease in strength. However, the growth rate of compressive strength of SSP2 (20% replacement by the weight of OPC) at the curing ages of 90 days was about 8% higher than that of OPC, and the durability of SSP2 was better than that of OPC. The combination of mineral admixtures improved the later strength, water impermeability, and sulfate resistance compared with OPC and SSP2. The compressive strength of SSPFA (SSP and SF) at 90 days reached 70.3 MPa. The results of X-ray diffraction patterns and scanning electron microscopy indicated that SSP played a synergistic role with FA or SF to improve the performance of cement mortar.


Sign in / Sign up

Export Citation Format

Share Document