Bipolar magnetostriction in CoFe2O4: Effect of sintering, measurement temperature, and prestress

2020 ◽  
Vol 128 (10) ◽  
pp. 103904
Author(s):  
K. Venkata Siva ◽  
S. Sudersan ◽  
A. Arockiarajan
Energies ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 2849 ◽  
Author(s):  
Yong Du ◽  
Haixia Li ◽  
Xuechen Jia ◽  
Yunchen Dou ◽  
Jiayue Xu ◽  
...  

Graphite/poly(3,4-ethyenedioxythiophene) (PEDOT) nanocomposites were prepared by an in-situ oxidative polymerization process. The electrical conductivity and Seebeck coefficient of the graphite/PEDOT nanocomposites with different content of graphite were measured in the temperature range from 300 K to 380 K. The results show that as the content of graphite increased from 0 to 37.2 wt %, the electrical conductivity of the nanocomposites increased sharply from 3.6 S/cm to 80.1 S/cm, while the Seebeck coefficient kept almost the same value (in the range between 12.0 μV/K to 15.1 μV/K) at 300 K, which lead to an increased power factor. The Seebeck coefficient of the nanocomposites increased from 300 K to 380 K, while the electrical conductivity did not substantially depend on the measurement temperature. As a result, a power factor of 3.2 μWm−1 K−2 at 380 K was obtained for the nanocomposites with 37.2 wt % graphite.


2003 ◽  
Vol 17 (14) ◽  
pp. 1877-1887 ◽  
Author(s):  
A. M. Gallardo-Moreno ◽  
M. L. González-Martín ◽  
J. M. Bruque ◽  
C. Pérez-Giraldo ◽  
R. Sánchez-Silos ◽  
...  

2020 ◽  
Vol 842 ◽  
pp. 155843
Author(s):  
V. Janardhanam ◽  
I. Jyothi ◽  
Yonghun Kim ◽  
Sung-Nam Lee ◽  
Hyung-Joong Yun ◽  
...  

1996 ◽  
Vol 23 (4) ◽  
pp. 467 ◽  
Author(s):  
J Santrucek ◽  
RF Sage

Acclimation of stomatal conductance to different CO2 and temperature regimes was determined in Chenopodium album L. plants grown at one of three treatment conditions: 23�C and 350 μmol CO2 mol-1 air; 34�C and 350 μmol mol-1; and 34�C and 750 μmol mol-1. Stomatal conductance (gs) as a function of intercellular CO2 (Ci) was determined for each treatment at 25 and 35�C, and these data were used to estimate gains of the feedback loops linking changes in intercellular CO2 with stomatal conductance and net CO2 assimilation. Growth temperature affected the sensitivity of stomata to measurement temperature in a pattern that was influenced by intercellular CO2. Stomatal conductance more than doubled at intercellular CO2 varying between 200 and 600 μmol mol-1 as leaf temperature increased from 25 to 35�C for plants grown at 23�C. In contrast, stomatal conductance was almost unaffected by measurement temperature in plants grown at 34�C. Elevated growth CO2 attenuated the response of stomatal conductance to CO2, but growth temperature did not. Stomatal sensitivity to Ci was extended to higher Ci in plants grown in elevated CO2. As a result, plants grown at 750 μmol mol-1 CO2 had higher Ci/Ca at ambient CO2 values between 300 and 1200 �mol mol-1 than plants grown at 350 �mol mol-1 CO2. The gain of the stomatal loop was reduced in plants grown at elevated CO2 or at lower temperature when compared to plants grown at 350 μmol mol-1 and 34°C. Both photosynthetic and stomatal loop gains acclimated to elevated CO2 in proportion so that their ratio, integrated over the range of Ci in which the plant operates, remained constant. Water use efficiency (WUE) more than doubled after a short-term doubling of ambient CO2. However, the WUE of plant grown and measured at elevated CO2 was only about 1.5 times that of plant transiently exposed to elevated CO2, due to stomatal acclimation. An optimal strategy of water use was maintained for all growth treatments.


2016 ◽  
Vol 24 (04) ◽  
pp. 1750047 ◽  
Author(s):  
OSMAN KAHVECI ◽  
ABDULLAH AKKAYA ◽  
ENISE AYYILDIZ ◽  
ABDÜLMECIT TÜRÜT

We have fabricated the Ti/[Formula: see text]-type GaAs Schottky diodes (SDs) by the DC magnetron deposition and thermal evaporation, cut from the same GaAs substrates, and we have made a comparative study of the current–voltage ([Formula: see text]–[Formula: see text]) measurements of both SDs in the measurement temperature range of 160–300[Formula: see text]K with steps of 10[Formula: see text]K. The barrier height (BH) values of about 0.82 and 0.76[Formula: see text]eV at 300[Formula: see text]K have been obtained for the sputtered and evaporated SDs, respectively. It has been seen that the apparent BH value for the diodes has decreased with decreasing temperature obeying the single-Gaussian distribution (GD) for the evaporated diode and the double-GD for the sputtered diode over the whole measurement temperature range. The increment in BH and observed discrepancies in the sputtered diode have been attributed to the reduction in the native oxide layer present on the substrate surface by the high energy of the sputtered atoms and to sputtering-induced defects present in the near-surface region. We conclude that the thermal evaporation technique yields better quality Schottky contacts for use in electronic devices compared to the DC magnetron deposition technique.


Sign in / Sign up

Export Citation Format

Share Document