On the possibility of obtaining high energy parameters from an IR-initiated thermal-chain explosion H2— F2laser

2001 ◽  
Vol 31 (2) ◽  
pp. 135-138
Author(s):  
Valerii I Igoshin ◽  
S Yu Pichugin ◽  
I L Stukalina
1986 ◽  
Vol 51 (4) ◽  
pp. 731-737
Author(s):  
Viliam Klimo ◽  
Jozef Tiňo

Geometry and energy parameters of the individual dissociation intermediate steps of CH4 molecule, parameters of the barrier to linearity and singlet-triplet separation of the CH2 molecule have been calculated by means of the UMP method in the minimum basis set augmented with the bond functions. The results agree well with experimental data except for the geometry of CH2(1A1) and relatively high energy values of CH(2II) and CH2(1A1) where the existence of two UHF solutions indicates a necessity of description of the electronic correlation by more exact methods of quantum chemistry.


2010 ◽  
Author(s):  
Sara Motta ◽  
Tomaso M. Belloni ◽  
A. Comastri ◽  
L. Angelini ◽  
M. Cappi

2009 ◽  
Vol 62 (10) ◽  
pp. 1271 ◽  
Author(s):  
Claus E. Schäffer ◽  
Christian Anthon ◽  
Jesper Bendix

Kohn–Sham density functional theory (DFT), constrained by the average-of-configuration computations, allows the valence shell of regular tetrahedral chlorido complexes of a complete series of 3d transition metal ions to be orbitally compared. The concept of classificational parentage provides a handle on the discussion of the energetic ordering of all the valence orbitals and illuminates an almost identical ordering for all the systems. Only the participation of the metal 4s orbital in bonding causes a few minor fluctuations. The partially filled ‘3d’ molecular orbitals sit in an energy window framed by completely filled ‘ligand orbitals’ on the low-energy side and an empty metal ‘4s’ orbital on the high-energy side. Regular tetrahedral symmetry requires the halides to be linearly ligating and this property is stable within the ‘experimental’ uncertainty for small distortions. By lowering the symmetry towards the planar configuration, keeping the equivalence of the ligands stable, the information content of the computations was doubled and the angular overlap energy parameters referring to the individual ligands obtained. The orbital energies of the partially filled shell depend linearly on the Angular Overlap Model (AOM) parameters eλ, the slope being the sum of the squares of the single-ligand λ angular overlaps (λ = σ and π). Mulliken population analysis shows the contents of the appropriate ligand orbitals in the ‘d’ orbitals to vary in parallel with the molecular orbital AOM energies and to increase pronouncedly with the oxidation number z. Results for tetraoxidoferrate(vi) show a remarkable resemblance with the chloride complexes of even the divalent metal ions. However, although the bonding orbitals are more π-bonding, the totally symmetrical bonding orbitals use M_4s less in the oxido complex. The sensitivity of covalency and spectroscopic energy parameters towards radial distortions are examined and show Werner-type complexes and the high-valent FeO42– to behave somewhat differently.


Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4167
Author(s):  
Joanna Szyszlak-Bargłowicz ◽  
Tomasz Słowik ◽  
Grzegorz Zając ◽  
Agata Blicharz-Kania ◽  
Beata Zdybel ◽  
...  

The process of pelleting miscanthus biomass often encounters issues related to the low durability of the obtained pellets and high energy inputs. To solve these issues, the use of copra meal as a supplement is proposed. This paper presents the results of research on energy parameters of miscanthus biomass pellets supplemented with copra meal in terms of energy consumption in the pressure agglomeration process. As part of this research, the energy parameters of miscanthus biomass, copra meal biomass, and their blends were characterized. Next, the raw materials were used for the production of pellets in the pressure agglomeration process. The investigations included proximate and ultimate analysis and estimation of heating values. Moreover, the total fat content, mechanical durability, kinetic strength, and bulk density were determined, and the energy consumption in the pelleting process was assessed. The results indicate that the energy consumption in the miscanthus biomass pelleting process can be substantially reduced by adding copra meal as a biocomponent. When the copra meal addition did not exceed 30%, the pellets exhibited over 95% durability, over 1200 kg∙m−3 density, and over 417 kg∙m−3 bulk density. Given the 44% reduction in energy consumption in the pellet production process and the energy efficiency of 4815 Wh·kg−1 determined in this study, copra meal may be an interesting material for use as an additive in the production of miscanthus biomass pellets.


10.5219/1436 ◽  
2020 ◽  
Vol 14 ◽  
pp. 937-944
Author(s):  
Mikhailo Mushtruk ◽  
Maxim Gudzenko ◽  
Igor Palamarchuk ◽  
Volodymyr Vasyliv ◽  
Natalia Slobodyanyuk ◽  
...  

The extrusion process of oil-containing raw materials using a twin-screw extruder is becoming increasingly common in food technology. The problem of high energy costs for the implementation of this process is solved by reducing the resistance of the process mass due to the preliminary grinding of raw materials. The classical theory of extrusion is based mainly on the use of theoretical solutions of mathematical models of processes, which are simplified and allow determining integral parameters using coefficients, the preparation of which for the calculation of the corresponding processes and equipment is a rather complicated and approximate procedure. Mathematical modelling of the movement of the technological medium at the individual stages of the processing of raw materials allows us to determine the analytical dependences for the power and energy parameters of the system and to carry out their effective technical and economic evaluation. Using the methods of mathematical analysis and data processing in the MathCAD software environment, graphical dependences of the power and energy parameters of the research technical system were obtained. By increasing the density of the oil-containing raw materials, which is extruded in the research extruder by 40.5% the pressure force increases by 41%, that is, there is an almost proportional relationship between the pressure force and the density of the processed raw material. With an increase in the angular velocity of the drive shaft ω more than 8 rad.s-1, the pressure force in the research process increases sharply. With an increase in the density of raw materials, it is grinded before extrusion by 40%, the power consumption for the grinding process increases by 2.8 times for the recommended operating mode. Energy losses for pressing completely grinded raw materials are reduced by 2.52 times.


1984 ◽  
Vol 75 ◽  
pp. 599-602
Author(s):  
T.V. Johnson ◽  
G.E. Morfill ◽  
E. Grun

A number of lines of evidence suggest that the particles making up the E-ring are small, on the order of a few microns or less in size (Terrile and Tokunaga, 1980, BAAS; Pang et al., 1982 Saturn meeting; Tucson, AZ). This suggests that a variety of electromagnetic and plasma affects may be important in considering the history of such particles. We have shown (Morfill et al., 1982, J. Geophys. Res., in press) that plasma drags forces from the corotating plasma will rapidly evolve E-ring particle orbits to increasing distance from Saturn until a point is reached where radiation drag forces acting to decrease orbital radius balance this outward acceleration. This occurs at approximately Rhea's orbit, although the exact value is subject to many uncertainties. The time scale for plasma drag to move particles from Enceladus' orbit to the outer E-ring is ~104yr. A variety of effects also act to remove particles, primarily sputtering by both high energy charged particles (Cheng et al., 1982, J. Geophys. Res., in press) and corotating plasma (Morfill et al., 1982). The time scale for sputtering away one micron particles is also short, 102 - 10 yrs. Thus the detailed particle density profile in the E-ring is set by a competition between orbit evolution and particle removal. The high density region near Enceladus' orbit may result from the sputtering yeild of corotating ions being less than unity at this radius (e.g. Eviatar et al., 1982, Saturn meeting). In any case, an active source of E-ring material is required if the feature is not very ephemeral - Enceladus itself, with its geologically recent surface, appears still to be the best candidate for the ultimate source of E-ring material.


Author(s):  
J. B. Warren

Electron diffraction intensity profiles have been used extensively in studies of polycrystalline and amorphous thin films. In previous work, diffraction intensity profiles were quantitized either by mechanically scanning the photographic emulsion with a densitometer or by using deflection coils to scan the diffraction pattern over a stationary detector. Such methods tend to be slow, and the intensities must still be converted from analog to digital form for quantitative analysis. The Instrumentation Division at Brookhaven has designed and constructed a electron diffractometer, based on a silicon photodiode array, that overcomes these disadvantages. The instrument is compact (Fig. 1), can be used with any unmodified electron microscope, and acquires the data in a form immediately accessible by microcomputer.Major components include a RETICON 1024 element photodiode array for the de tector, an Analog Devices MAS-1202 analog digital converter and a Digital Equipment LSI 11/2 microcomputer. The photodiode array cannot detect high energy electrons without damage so an f/1.4 lens is used to focus the phosphor screen image of the diffraction pattern on to the photodiode array.


Author(s):  
J. M. Oblak ◽  
W. H. Rand

The energy of an a/2 <110> shear antiphase. boundary in the Ll2 expected to be at a minimum on {100} cube planes because here strue ture is there is no violation of nearest-neighbor order. The latter however does involve the disruption of second nearest neighbors. It has been suggested that cross slip of paired a/2 <110> dislocations from octahedral onto cube planes is an important dislocation trapping mechanism in Ni3Al; furthermore, slip traces consistent with cube slip are observed above 920°K.Due to the high energy of the {111} antiphase boundary (> 200 mJ/m2), paired a/2 <110> dislocations are tightly constricted on the octahedral plane and cannot be individually resolved.


Author(s):  
E.D. Wolf

Most microelectronics devices and circuits operate faster, consume less power, execute more functions and cost less per circuit function when the feature-sizes internal to the devices and circuits are made smaller. This is part of the stimulus for the Very High-Speed Integrated Circuits (VHSIC) program. There is also a need for smaller, more sensitive sensors in a wide range of disciplines that includes electrochemistry, neurophysiology and ultra-high pressure solid state research. There is often fundamental new science (and sometimes new technology) to be revealed (and used) when a basic parameter such as size is extended to new dimensions, as is evident at the two extremes of smallness and largeness, high energy particle physics and cosmology, respectively. However, there is also a very important intermediate domain of size that spans from the diameter of a small cluster of atoms up to near one micrometer which may also have just as profound effects on society as “big” physics.


Sign in / Sign up

Export Citation Format

Share Document