The importance of environmental factors in soil fertility assessments. I. Dry matter production

1974 ◽  
Vol 25 (2) ◽  
pp. 299 ◽  
Author(s):  
RC Stefanson ◽  
N Collis-George

The importance of environmental factors on assessments of soil fertility was examined by means of pot experiments in the glasshouse. A preliminary experiment showed, over the course of 12 months of testing, that the fertility ratio varied with the season. In the main experiment each of two soils received nine chemical treatments in an omission-type experimental design. All chemical treatments were subjected to three different light regimes obtained by shading and to three soil temperatures. They were repeated at three different seasons of the year. Plants growing under acute mineral deficiency responded to changes in the environmental conditions and the deficiency became less acute the more the physical conditions favoured plant growth. Changes in environmental conditions were able to eliminate a marginal deficiency of plant nutrient. Because the results show many first and second order interactions between root temperature, light intensity and season, and because of the different yield responses to these factors for different soils and for different nutrients, an assessment of fertility by means of fertility ratios under one set of pot culture conditions cannot easily be applied to other situations.


Author(s):  
Violeta Vateva

Among the innovative environmental ways of maintaining soil fertility, green fertilization is the most appropriate and effective way. This type of fertilization can be done with the green vegetative mass of different plants, but the most significant effect is obtained from legumes. The present experiment was conducted with spring fodder peas (Pisum sativum, var. Arvense, L.) Bogatir variety. The aim is to determine the influence of the main groups of factors on the productivity of green vegetative pea mass. The morphological analysis of the green vegetative mass in beginning of flowering was made. The participation of weeds in the green vegetative mass has been reported. The density of the aboveground vegetative mass before plowing was monitored. The yield of green mass at the beginning of flowering of peas was established. The results show that, from spring forage peas, the Bogatir variety grown under environmental conditions yields 2467kg / dka of green vegetative mass. The participation of weeds in green biomass is minimal, averaging only 3.73%. The share of stalks, leaves and generative organs is as follows, 51: 38: 11%., leaves and generative organs is in ratio 44%: 39%: 17%. The analysis of the results give us reason to recommend the use of Bogatir spring fodder pea as an effective crop for green fertilizin.



Atmosphere ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 180
Author(s):  
Eigo Tochimoto ◽  
Mario Marcello Miglietta ◽  
Leonardo Bagaglini ◽  
Roberto Ingrosso ◽  
Hiroshi Niino

Characteristics of extratropical cyclones that cause tornadoes in Italy are investigated. Tornadoes between 2007 and 2016 are analyzed, and statistical analysis of the associated cyclone structures and environments is performed using the JRA-55 reanalysis. Tornadoes are distributed sporadically around the cyclone location within a window of 10° × 10°. The difference in the cyclone tracks partially explains the seasonal variability in the distribution of tornadoes. The highest number of tornadoes occur south of the cyclone centers, mainly in the warm sector, while a few are observed along the cold front. Composite mesoscale parameters are examined to identify the environmental conditions associated with tornadoes in different seasons. Potential instability is favorable to tornado development in autumn. The highest convective available potential energy (CAPE) in this season is associated with relatively high-temperature and humidity at low-levels, mainly due to the strong evaporation over the warm Mediterranean Sea. Upper-level potential vorticity (PV) anomalies and the associated cold air reduce the static stability above the cyclone center, mainly in spring and winter. On average, the values of CAPE are lower than for US tornadoes and comparable with those occurring in Japan, while storm relative helicity (SREH) is comparable with US tornadoes and higher than Japanese tornadoes, indicating that the environmental conditions for Italian tornadoes have peculiar characteristics. Overall, the conditions emerging in this study are close to the high-shear, low-CAPE environments typical of cool-season tornadoes in the Southeastern US.



2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Daniel Ruiz Potma Gonçalves ◽  
Umakant Mishra ◽  
Skye Wills ◽  
Sagar Gautam

AbstractUnderstanding the influence of environmental factors on soil organic carbon (SOC) is critical for quantifying and reducing the uncertainty in carbon climate feedback projections under changing environmental conditions. We explored the effect of climatic variables, land cover types, topographic attributes, soil types and bedrock geology on SOC stocks of top 1 m depth across conterminous United States (US) ecoregions. Using 4559 soil profile observations and high-resolution data of environmental factors, we identified dominant environmental controllers of SOC stocks in 21 US ecoregions using geographically weighted regression. We used projected climatic data of SSP126 and SSP585 scenarios from GFDL-ESM 4 Earth System Model of Coupled Model Intercomparison Project phase 6 to predict SOC stock changes across continental US between 2030 and 2100. Both baseline and predicted changes in SOC stocks were compared with SOC stocks represented in GFDL-ESM4 projections. Among 56 environmental predictors, we found 12 as dominant controllers across all ecoregions. The adjusted geospatial model with the 12 environmental controllers showed an R2 of 0.48 in testing dataset. Higher precipitation and lower temperatures were associated with higher levels of SOC stocks in majority of ecoregions. Changes in land cover types (vegetation properties) was important in drier ecosystem as North American deserts, whereas soil types and topography were more important in American prairies. Wetlands of the Everglades was highly sensitive to projected temperature changes. The SOC stocks did not change under SSP126 until 2100, however SOC stocks decreased up to 21% under SSP585. Our results, based on environmental controllers of SOC stocks, help to predict impacts of changing environmental conditions on SOC stocks more reliably and may reduce uncertainties found in both, geospatial and Earth System Models. In addition, the description of different environmental controllers for US ecoregions can help to describe the scope and importance of global and local models.



2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jia-ming Wei ◽  
Li-juan Cui ◽  
Wei Li ◽  
Yun-mei Ping ◽  
Wan Li

AbstractDenitrification is an important part of the nitrogen cycle and the key step to removal of nitrogen in surface-flow wetlands. In this study, we explored space–time analysis with high-throughput sequencing to elucidate the relationships between denitrifying bacteria community structures and environmental factors during different seasons. Our results showed that along the flow direction of different processing units, there were dynamic changes in physical and chemical indicators. The bacterial abundance indexes (ACEs) in May, August, and October were 686.8, 686.8, and 996.2, respectively, whereas the Shannon-Weiner indexes were 3.718, 4.303, and 4.432, respectively. Along the flow direction, the denitrifying bacterial abundance initially increased and then decreased subsequently during the same months, although diversity tended to increase. The abundance showed similar changes during the different months. Surface flow wetlands mainly contained the following denitrifying bacteria genus: unclassified Bacteria (37.12%), unclassified Proteobacteria (18.16%), Dechloromonas (16.21%), unranked environmental samples (12.51%), unclassified Betaproteobacteria (9.73%), unclassified Rhodocyclaceae (2.14%), and Rhodanobacter (1.51%). During different seasons, the same unit showed alternating changes, and during the same season, bacterial community structures were influenced by the second genus proportion in different processing units. ACEs were strongly correlated with temperature, dissolved oxygen, and pH. Bacterial diversity was strongly correlated with temperature, electrical conductivity, pH, and oxidation reduction potential. Denitrifying bacteria are greatly affected by environmental factors such as temperature and pH.



2021 ◽  
Vol 22 (8) ◽  
pp. 4157
Author(s):  
Lars Fuhrmann ◽  
Saskia Lindner ◽  
Alexander-Thomas Hauser ◽  
Clemens Höse ◽  
Oliver Kretz ◽  
...  

A growing body of evidence suggests that low nephron numbers at birth can increase the risk of chronic kidney disease or hypertension later in life. Environmental stressors, such as maternal malnutrition, medication and smoking, can influence renal size at birth. Using metanephric organ cultures to model single-variable environmental conditions, models of maternal disease were evaluated for patterns of developmental impairment. While hyperthermia had limited effects on renal development, fetal iron deficiency was associated with severe impairment of renal growth and nephrogenesis with an all-proximal phenotype. Culturing kidney explants under high glucose conditions led to cellular and transcriptomic changes resembling human diabetic nephropathy. Short-term high glucose culture conditions were sufficient for long-term alterations in DNA methylation-associated epigenetic memory. Finally, the role of epigenetic modifiers in renal development was tested using a small compound library. Among the selected epigenetic inhibitors, various compounds elicited an effect on renal growth, such as HDAC (entinostat, TH39), histone demethylase (deferasirox, deferoxamine) and histone methyltransferase (cyproheptadine) inhibitors. Thus, metanephric organ cultures provide a valuable system for studying metabolic conditions and a tool for screening for epigenetic modifiers in renal development.



2021 ◽  
Vol 7 (4) ◽  
pp. 726-738
Author(s):  
Seyyed M. H. Abtahi ◽  
Ojaswi Aryal ◽  
Niveen S. Ismail

Zooplankton can significantly impact E. coli inactivation in wastewater, but inactivation rates are dependent on environmental conditions.



2021 ◽  
Author(s):  
Sobia Shahzad ◽  
Mumtaz Hussain ◽  
Hassan Munir ◽  
Muhammad Arfan

Abstract Exploring extractable phytochemicals from locally adapted sisal plant vegetation vary seasonally at different locations. This study elaborated proximate composition and phytochemical heterogeneity in sisal due to varying environmental conditions analyzed from five districts, i.e., Chakwal, Khushab, Rawalpindi, Faisalabad, and Layyah in Punjab, Pakistan. Extensive surveying and plant sampling across two years 2017-18 and 2018-19, during mid-spring, summer, autumn, and winter seasons were carried out for understanding the seasonal impact on sisal. The present study was designed in a randomized complete block design (RCBD) and analyzed considering seasonal, yearly, and locational impact. The spatial differences in phytochemicals concentration were strongly associated with environmental conditions prevailing in different seasons. Autumn season reflected saponins, tannins, and flavonoids in higher concentrations during 2018-19 while steroids and terpenoids were higher during spring 2018-19. While Spatio-temporal variations in the proximate analysis were more apparent in different samples collected from different districts. Data recorded for the Khushab district and autumn season reflected the higher composition of a proximate analysis and phytochemical contents as compared to other seasons. Overall, the spatial differences in phytochemicals concentration were strongly associated with soils and environmental conditions prevailing in different seasons in selected districts.



Author(s):  
I. V. Zlobina

The article discusses the results of a study of bending deformation and creep under transverse load of cured polymer composite materials (PCM), which were located for 8 months in full-scale environmental conditions in Saratov. It was found that being under the influence of natural climatic factors for the specified time leads to an increase in the bending deformation of samples from 13,5 to 25,4%, depending on the load. Processing in a microwave electromagnetic field with a frequency of 2450 MHz with an energy flux density of (17-18) x10 mW / cm for 2 minutes reduces bending deformation by (9-18)%, and creep - up to 4 times.



1972 ◽  
Vol 50 (12) ◽  
pp. 2673-2682 ◽  
Author(s):  
William H. Harvey ◽  
James D. Caponetti

Intact, set III, cinnamon fern cataphyll and frond primordia, which were shown to have no predisposition to fertility in situ, produced sporangia when excised and cultured under sterile conditions in Knudson's medium supplemented with various levels of sucrose and maintained on 11 different regimens of light, darkness, and temperature for 10 weeks. Increasing levels of sucrose resulted in increased fertility under all environmental conditions, but the highest percentage of fertility was obtained under conditions of continuous dark at 26 °C. As the length of the light phase of the photoperiods decreased, a progressive increase in induction of fertile leaves was observed, suggesting that periods of long light exposure are inhibitory to the initiation of sporangia. Conversely, as the light intensity was increased, an inhibition of sporophyll differentiation occurred. Sporangia excised from dark-induced sporophylls and cultured in the light produced viable spores which germinated yielding haploid gametophytes that ultimately produced sporophytes.



Author(s):  
Joseph Marlow ◽  
Christine H.L. Schönberg ◽  
Simon K. Davy ◽  
Abdul Haris ◽  
Jamaluddin Jompa ◽  
...  

Despite global deterioration of coral reef health, not all reef-associated organisms are in decline. Bioeroding sponges are thought to be largely resistant to the factors that stress and kill corals, and are increasing in abundance on many reefs. However, there is a paucity of information on how environmental factors influence spatial variation in the distribution of these sponges, and how they might be affected by different stressors. We aimed to identify the factors that explained differences in bioeroding sponge abundance and assemblage composition, and to determine whether bioeroding sponges benefit from the same environmental conditions that can contribute towards coral mortality. Abundance surveys were conducted in the Wakatobi region of Indonesia on reefs characterized by different biotic and abiotic conditions. Bioeroding sponges occupied an average of 8.9% of available dead substrate and variation in abundance and assemblage composition was primarily attributed to differences in the availability of dead substrate. Our results imply that if dead substrate availability increases as a consequence of coral mortality, bioeroding sponge abundance is also likely to increase. However, bioeroding sponge abundance was lowest on a sedimented reef, despite abundant dead substrate. This suggests that not all forms of coral mortality will benefit all bioeroding sponge species, and sediment-degraded reefs are likely to be dominated by a few resilient bioeroding sponge species. Overall, we demonstrate the importance of understanding the drivers of bioeroding sponge abundance and assemblage composition in order to predict possible impacts of different stressors on reefs communities.



Sign in / Sign up

Export Citation Format

Share Document