Corrigendum - Predicting phenological development for Australian wheats

1987 ◽  
Vol 38 (5) ◽  
pp. 809
Author(s):  
MW Perry ◽  
KHM Siddique ◽  
JF Wallace

Dates of ear initation and anthesis were recorded for 16 wheat cultivars at a wide range of sowing dates in four field experiments conducted over four years.In general for the majority of cultivars number of days from sowing to ear initiation increased as sowing was delayed through May and then declined with sowings after June. The effects of sowing date and cultivar on anthesis were similar to those observed for ear initiation. Maximum time to anthesis was observed from sowings in early May.A linear regression model relating rate of development to mean temperature and photoperiod accounted for 47-98% of the variation in rate of development from sowing to ear initiation and from 68 to 98% of the variation from ear initiation to anthesis. A five-parameter non-linear model was also tested but was not superior. Observations in a single year were sufficient to characterize a cultivar provided the range of mean temperature and photoperiod was large.Comparison with data from other field sites of ear initiation and anthesis showed that the regression equations gave a good fit to the occurrence of these events when used in the incremental sense, that is, by summing increments of development rate calculated from daily temperature and photoperiod.The prediction model is discussed in relation to its application in simulation models of crop growth, analysis of cultivar adaptation to environments and in day-to-day crop management.

1987 ◽  
Vol 38 (5) ◽  
pp. 809
Author(s):  
MW Perry ◽  
KHM Siddique ◽  
JF Wallace

Dates of ear initation and anthesis were recorded for 16 wheat cultivars at a wide range of sowing dates in four field experiments conducted over four years.In general for the majority of cultivars number of days from sowing to ear initiation increased as sowing was delayed through May and then declined with sowings after June. The effects of sowing date and cultivar on anthesis were similar to those observed for ear initiation. Maximum time to anthesis was observed from sowings in early May.A linear regression model relating rate of development to mean temperature and photoperiod accounted for 47-98% of the variation in rate of development from sowing to ear initiation and from 68 to 98% of the variation from ear initiation to anthesis. A five-parameter non-linear model was also tested but was not superior. Observations in a single year were sufficient to characterize a cultivar provided the range of mean temperature and photoperiod was large.Comparison with data from other field sites of ear initiation and anthesis showed that the regression equations gave a good fit to the occurrence of these events when used in the incremental sense, that is, by summing increments of development rate calculated from daily temperature and photoperiod.The prediction model is discussed in relation to its application in simulation models of crop growth, analysis of cultivar adaptation to environments and in day-to-day crop management.


2018 ◽  
Vol 64 (No. 7) ◽  
pp. 310-316 ◽  
Author(s):  
Mirosavljevic Milan ◽  
Momcolovic Vojislava ◽  
Maksimovic Ivana ◽  
Putnik-Delic Marina ◽  
Pržulj Novo ◽  
...  

The aim of this study was to improve understanding of (1) the effect of genotypic and environmental factors on pre-anthesis development and leaf appearance traits of barley and wheat; (2) the relationship of these factors with grain yield, and (3) the differences between these two crops across different environments/sowing dates. Therefore, trials with six two-row winter barley and six winter wheat cultivars were carried out in two successive growing seasons on four sowing dates. Our study showed that the observed traits varied between species, cultivars and sowing dates. In both growing seasons, biomass at anthesis and grain yield declined almost linearly by delaying the sowing date. There was no clear advantage in grain yield of wheat over barley under conditions of later sowing dates. Generally, barley produced more leaf and had shorter phyllochron than wheat. Both wheat and barley showed a similar relationship between grain yield and different pre-anthesis traits.


1979 ◽  
Vol 30 (5) ◽  
pp. 855 ◽  
Author(s):  
RJ Lawn

Phenological development of 16 cultivars from four Vigna species (V. radiata, green gram; V. mungo, black gram; V. angularis, adzuki bean; V. umbellata, rice bean) was studied over a range of 17 weekly sowing dates at Lawes in south-eastern Queensland. Cultivar and sowing date effects on phenology were large. In all cultivars, the rate of development during pre-flowering was associated negatively with mean day length and positively with mean maximum and/or mean minimum temperature. Cultivars differed in sensitivity to both photoperiod and temperature. Genetic lateness of flowering among cultivars was associated positively with increasing sensitivity to day length and negatively with the latitude of cultivar source. In the grams, early-flowering cultivars showed response to maximum temperatures, while the later-flowering lines responded to minimum temperatures. Rate of development in all four species during the reproductive phase was largely independent of cultivar and sowing date, per se, but rather appeared to depend on the day length and temperature regimes prevailing subsequent to the onset of flowering. The reproductive period in all species was shortest for those cultivar x sowing date combinations which commenced flowering in early autumn. Where flowering occurred in midsummer, i.e. for early sowings and for early cultivars, the reproductive period was extended as a consequence of prolonged flowering in response to the longer prevailing day lengths. As the date of flowering was delayed into mid or late autumn, the reproductive phase was extended owing to slower pod maturation rates in response to cooler prevailing temperatures. The implications of these responses on adaptation and agronomic utilization of these species are discussed.


1957 ◽  
Vol 48 (4) ◽  
pp. 447-456 ◽  
Author(s):  
E. S. Bunting ◽  
L. A. Willey

Between 1953 and 1955 a series of field experiments have been carried out in Great Britain to assess the effect of sowing date on the extent and the rate of emergence of a number of varieties of maize.The range of sowing dates was from late March till May. Records were kept of the soil temperatures, these will be reported later, and in certain experiments the water content of the soil was maintained at field capacity. In all experiments a northern flint variety and a southern dent variety were sown, in the first year only flint × dent hybrids were also grown.There was an increase in final emergence with the later sowing dates. The northern flint varieties were superior to the southern dent varieties, while the flint × dent hybrids occupied an intermediate position. The lower final emergence of the southern dent variety was most marked at the earlier sowing dates.Differences between varieties in the speed of emergence, taken as the number of days from sowing until half of the surviving seedlings had emerged, was observed at several centres. The open-pollinated varieties usually emerged more slowly than the flint × dent hybrids. There was a very marked difference between early- and late-sowing dates in speed of emergence.It was possible in the second year to compare seed of high quality with that of low quality as determined by the ‘cold test’ of germination capacity. The lowquality seed gave greatly reduced final emergence, the experiments stressing the need for the adoption of a standard ‘cold test’ for maize seed, especially of that intended for sowing in north-western Europe.The high final emergence of the northern flint varieties suggest that a gene source for resistance to soil pathogen attack is readily available. The possibilities in north-western Europe for expansion of growing grain maize would be greatly strengthened by development of varieties capable of growth at low temperatures. The experiments suggest that until such varieties are available little advantage in time of emergence will be gained by sowing maize before late April in Britain.


Plant Disease ◽  
2006 ◽  
Vol 90 (3) ◽  
pp. 365-374 ◽  
Author(s):  
Blanca B. Landa ◽  
Juan A. Navas-Cortés ◽  
María del Mar Jiménez-Gasco ◽  
Jaacov Katan ◽  
Baruch Retig ◽  
...  

Use of resistant cultivars and adjustment of sowing dates are important measures for management of Fusarium wilt in chickpeas (Cicer arietinum). In this study, we examined the effect of temperature on resistance of chickpea cultivars to Fusarium wilt caused by various races of Fusarium oxysporum f. sp. ciceris. Greenhouse experiments indicated that the chickpea cultivar Ayala was moderately resistant to F. oxysporum f. sp. ciceris when inoculated plants were maintained at a day/night temperature regime of 24/21°C but was highly susceptible to the pathogen at 27/25°C. Field experiments in Israel over three consecutive years indicated that the high level of resistance of Ayala to Fusarium wilt when sown in mid- to late January differed from a moderately susceptible reaction under warmer temperatures when sowing was delayed to late February or early March. Experiments in growth chambers showed that a temperature increase of 3°C from 24 to 27°C was sufficient for the resistance reaction of cultivars Ayala and PV-1 to race 1A of the pathogen to shift from moderately or highly resistant at constant 24°C to highly susceptible at 27°C. A similar but less pronounced effect was found when Ayala plants were inoculated with F. oxysporum f. sp. ciceris race 6. Conversely, the reaction of cultivar JG-62 to races 1A and 6 was not influenced by temperature, but less disease developed on JG-62 plants inoculated with a variant of race 5 of F. oxysporum f. sp. ciceris at 27°C compared with plants inoculated at 24°C. These results indicate the importance of appropriate adjustment of temperature in tests for characterizing the resistance reactions of chickpea cultivars to the pathogen, as well as when determining the races of isolates of F. oxysporum f. sp. ciceris. Results from this study may influence choice of sowing date and use of chickpea cultivars for management of Fusarium wilt of chickpea.


2002 ◽  
Vol 53 (10) ◽  
pp. 1155 ◽  
Author(s):  
I. Farré ◽  
M. J. Robertson ◽  
G. H. Walton ◽  
S. Asseng

Canola is a relatively new crop in the Mediterranean environment of Western Australia and growers need information on crop management to maximise profitability. However, local information from field experiments is limited to a few seasons and its interpretation is hampered by seasonal rainfall variability. Under these circumstances, a simulation model can be a useful tool. The APSIM-Canola model was tested using data from Western Australian field experiments. These experiments included different locations, cultivars, and sowing dates. Flowering date was predicted by the model with a root mean squared deviation (RMSD) of 4.7 days. The reduction in the period from sowing to flowering with delay in sowing date was accurately reproduced by the model. Observed yields ranged from 0.1 to 3.2 t/ha and simulated yields from 0.4 to 3.0 t/ha. Yields were predicted with a RMSD of 0.3–0.4 t/ha. The yield reduction with delayed sowing date in the high, medium, and low rainfall region (3.2, 6.1, and 8.6% per week, respectively) was accurately simulated by the model (1.1, 6.7, and 10.3% per week, respectively). It is concluded that the APSIM-Canola model, together with long-term weather data, can be reliably used to quantify yield expectation for different cultivars, sowing dates, and locations in the grainbelt of Western Australia.


Author(s):  
Hemat Z. Moustafa

Abstract Cotton crops are an important agricultural product in Egypt. However, the bollworm Earias insulana is a significant pest of cotton. Field experiment was carried out during the 2018 and 2019 seasons at Qaha Experimental Station, Qalyoubia governorate to determine the best dates for sowing cotton crops, to minimize E. insulana infestation and maintain high populations of the predators of spiny bollworm. The latest sowing date had a significantly lower infestation of squares, flowers and green bolls than the other two sowing dates. After spraying the three planting date plots with profenofos, lambda-cyhalothrin and methomyl insecticides, infestation of cotton bolls by spiny bollworm was significantly reduced in treated compared with untreated plots. A significant positive correlation (r = 0.829* and 0.827*) was found between the average temperature and E. insulana infestation of squares and flowers, respectively, for the first planting date and (r = 0.819*) in squares for the second planting date of untreated plots of season 2018. The explained variance percentages of multiple regression analysis showed that the effects of mean temperature and relative humidity (RH) on the third sowing date had a significantly lower infestation of squares, flowers and green bolls by spiny bollworm as compared to the first and second sowing dates. The populations of common natural enemies of E. insulana on cotton plants, i.e., Chrysoperla carnea, Coccinella undecimpunctata and spiders were counted during the two seasons. The correlation between the RH percentage and populations of the three predators was insignificantly positive during the 2018 season, while it was negatively or positively insignificant during the 2019 season. The correlation between the mean temperature and the populations of the three predators was insignificantly negative for C. carnea and positive for spiders during the 2018 season, whereas a positive correlation was found between temperature and C. carnea and spiders and a negative correlation between temperature and C. undecimpunctata during the 2019 season.


2011 ◽  
Vol 150 (4) ◽  
pp. 442-459 ◽  
Author(s):  
L. LÁZARO ◽  
P. E. ABBATE

SUMMARYIn wheat, the photothermal quotient (Q, the ratio between mean incident solar radiation and mean temperature is greater than 4·5°C in the 30 days preceding anthesis), is a good estimator of grain number/m2 (GN) and of yield. Previous investigations have not analysed in depth whether the responses of GN to Q differ between wheat cultivars, or what is the cause of the eventual variation. In the present work, the results of field experiments carried out between 1994 and 2001 in various locations were used to test the following hypotheses: (i) the responses of GN to Q differ between wheat cultivars; (ii) these differences are caused by differences in the spike fertility index (GN/g spike dry weight/m2 at the beginning of grain filling (SDW)). The responses of GN to Q were compared for five wheat cultivars (four bread wheats and one durum wheat) and it was found that with Q values above 0·3 MJ/m2/d°C, all responses of GN to Q were linear, positive and parallel. A method was then proposed to obtain cultivar-specific GN from a common relationship between GN and Q. This method would facilitate GN estimation in crops with changes in sowing dates, sites or years, starting from data of potential GN and yield that is relatively easy to obtain. Differences among cultivars in response to Q were due to differences in GN response at SDW. Similar SDW values produced different GN, depending on the spike fertility index of each cultivar. The cultivars did not differ in their responses of SDW to Q. The association between spike fertility index and SDW was strongly negative in bread wheat. At lower levels of Q or SDW, the spike fertility index increased in all cultivars, at least when changes in SDW or Q were caused mainly by intercepted solar radiation, but the present results demonstrate that differences between cultivars also exist in this relationship.


1992 ◽  
Vol 118 (3) ◽  
pp. 271-278 ◽  
Author(s):  
E. J. M. Kirby

SUMMARYThe number of leaves formed on the main shoot of a wheat plant is an important developmental feature, and a method of predicting this is essential for computer simulation of development.A model function was used to estimate vernalization from simulated sowing dates throughout a season. When expressed in terms of thermal time, it was estimated that a plant might be fully vernalized soon after seedling emergence or take up to about 1000 °Cd, depending on sowing date. When the simulated progress of vernalization was related to main shoot development (primordium initiation and leaf emergence) it was found that there were substantial differences between sowings in the rate of vernalization at comparable stages of apex development.A number of field experiments done in Britain from 1980 to 1984 with prominent commercial varieties, sown at various times from September to March, were analysed in terms of the thermal time to full vernalization and the photoperiod at the time of full vernalization, with vernalization simulated by the model function. In both winter and spring varieties, both of these variables significantly affected the number of main shoot leaves. Multiple linear regression using these two variables accounted for between 70 and 90% of the variance in leaf number, depending on variety.


Bragantia ◽  
2016 ◽  
Vol 75 (4) ◽  
pp. 445-458 ◽  
Author(s):  
Alencar Junior Zanon ◽  
Nereu Augusto Streck ◽  
Thiago Schmitz Marques da Rocha ◽  
Cleber Maus Alberto ◽  
Alex Cristiano Bartz ◽  
...  

ABSTRACT There was a change in the genetics of soybeans grown in southern Brazil from the 2000s, which requires investment in basic and detailed studies about growth and development. The purpose in this paper was to characterize the overlap period of vegetative and reproductive phases, growth in height and the emission of nodes after the beginning of flowering in determinate and indeterminate cultivars in different sowing dates and soybean regions in Rio Grande do Sul. Field experiments were conducted during the growing seasons of 2012/2013 and 2013/2014, in Santa Maria, Itaqui, Frederico Westphalen, Capão do Leão, Júlio de Castilhos and in 3 commercial soybean crops in Restinga Sêca, Tupanciretã and Água Santa. Overlap determination (in days) of vegetative and reproductive phases, difference in the number of nodes and height in R8 and R1 were estimated. The cultivars with indeterminate growth had higher overlap period of vegetative and reproductive phases, height growth and emission of nodes after the beginning of flowering in comparison with the determinate cultivars. The magnitude of the overlap values of vegetative and reproductive phases and of the increase in height and number of nodes after R1 ranged with the type of growth, maturity group, location, and sowing date.


Sign in / Sign up

Export Citation Format

Share Document