Feeding by redlegged earth mite (Halotydeus destructor) on seedlings influences subsequent plant performance of different pulse crops

2000 ◽  
Vol 40 (5) ◽  
pp. 715 ◽  
Author(s):  
A. Liu ◽  
T. J. Ridsdill-Smith

Damage caused by redlegged earth mite to seedlings of 6 pulse species and its effect on subsequent plant growth and grain yield were examined under controlled and field conditions. Seedling damage caused by redlegged earth mite affected subsequent plant growth and reduced seed yield, but the responses varied among different pulse species. Field pea and yellow lupin were the most susceptible at seedling stage and flowering, but only yellow lupin suffered significant reduction in grain yield (30%) in the field. Narrow-leafed lupin suffered moderate damage, faba bean slight damage, while chickpea and lentil suffered little or no damage. The practical implications of these results are discussed.

2000 ◽  
Vol 51 (1) ◽  
pp. 113 ◽  
Author(s):  
A. Liu ◽  
T. J. Ridsdill-Smith ◽  
D. C. Nicholas

Redlegged earth mite (Halotydeus destructor) causes feeding damage to some pulse species at the seedling stage. To quantify the effect of this damage on subsequent plant growth and development, an experiment was conducted in the glasshouse using yellow lupin, Lupinus luteus cv. Motiv, which is highly susceptible to the mites. After emergence, plants were infested with 0, 100, 150, and 250 mites/plant, collected from the field. Fourteen days after application, mites were removed. Damage to plants was estimated at seedling stage, flowering time, and maturity. At seedling stage (on Day 14), feeding damage scores to cotyledons and true leaves were greater at higher mite densities. Damaged plants produced fewer nodules, fewer lateral roots, and less dry weight than the control. On Day 35, severely damaged plants failed to recover and on the surviving plants, cotyledons and true leaves died earlier than on the plants without damage. On Day 78, when plants were flowering, the surviving plants produced fewer nodules and branches, and less dry weight per plant than the control. The flowering time of plants with the mite treatments was delayed by up to 6 days compared with the controls. The final shoot dry weight, pod number, seed number, and seed yield per pot were significantly reduced by the mite treatments. Feeding by H. destructor on seedlings of yellow lupin caused a reduction in seed yield of 58% at the highest mite density treatment. This significant economic loss needs to be confirmed under field conditions, but it signifies the need to develop appropriate control measures for this pest.


2015 ◽  
Vol 66 (9) ◽  
pp. 938 ◽  
Author(s):  
T. J. Ridsdill-Smith ◽  
C. C. Pavri

The use of a TIMERITE® spring spray to control redlegged earth mite (RLEM), Halotydeus destructor (Tucker) (Acari: Penthaleidae), in annual pastures was evaluated on farms across Australia. RLEM populations in autumn in the treatments sprayed in spring 1998 and 1999 were 97% lower in 1999 and 97% in 2000 in the western region (Western Australia), and 93% lower in 1999 and 93% in 2000 in the eastern region (Victoria, New South Wales and South Australia). At sites in the west, control of RLEM resulted in significant increases in subterranean clover seed yield in 1999 and in clover seedling numbers in autumn 1999 and 2000. Penthaleus major (blue oat mite) populations in autumn were 60% lower in sprayed treatments, but Sminthurus viridis (lucerne flea) populations were not affected. Differences in weather between the west (where there is a hot, dry summer) and the east (where temperature and rainfall regimes are more variable in spring and early summer) seem to cause greater RLEM control and greater benefits in subterranean clover seed yield and seedling numbers with a spring spray in the west.


1992 ◽  
Vol 32 (1) ◽  
pp. 39 ◽  
Author(s):  
RF Brennan ◽  
M Grimm

The dry matter production (DM) and seed yield of subterranean clover (Trifolium subterraneum L. cv. Daliak) were reduced by infestations of redlegged earth mite (Halotydeus destructor Tucker) and blue-green aphid (Acyrthosiphon kondoi Shinji) during spring growth, flowering and burr burial. The dominance of these pests varied with season. The effects of spraying with insecticides on the DM and seed yield responses to superphosphate and potassium chloride fertilisers were measured. Responses to superphosphate were described by Mitscherlich functions for each of 3 levels of potassium chloride, except for seed yields with pest sprays. At optimum levels of superphosphate and potassium chloride, controlling pests increased DM by up to 150% (from 4.37 to 6.52 t/ha). For all levels of superphosphate, spraying to control pests where no potassium chloride was applied significantly increased DM over that on unsprayed plots that were fertilised with potassium chloride. The maximum DM response to superphosphate application was achieved at 15-20 kg P/ha. With optimum superphosphate, the value for DM depended on the combination of spraying for pests and amount of potassium chloride applied, generating a series of Mitscherlich response curves for superphosphate application with differing maximum yields. With optimum superphosphate applied, the least DM recorded within a season was 3.47 t/ha (pests not sprayed, nil potassium chloride), and the most was 6.52 t/ha (pests sprayed, 120 kg potassium chloride/ha), an increase of about 180%. At optimum levels of superphosphate and potassium chloride, controlling pests increased seed yield by up to 380% (from 290 to 1100 kg/ha). With optimum superphosphate, seed yield within a season ranged from 210 (pests not sprayed, nil potassium chloride) to 1100 kg/ha (pests sprayed, 120 kg potassium chloride/ha), an increase of 524%. With pests sprayed, seed yield declined with superphosphate applications >20 kg P/ha; the relationship was best described by a quadratic function. With pests not sprayed, seed yield did not decline with increasing amounts of superphosphate, and the relationship fitted a Mitscherlich function.


2017 ◽  
Vol 4 (03) ◽  
Author(s):  
PUNIT KUMAR ◽  
VICHITRA KUMAR ARYA ◽  
PRADEEP KUMAR ◽  
LOKENDRA KUMAR ◽  
JOGENDRA SINGH

A study on genetic variability, heritability and genetic advance for seed yield and component traits was made in 40 genotypes of riceduring kharif 2011-2012 at SHIATS, Allahabad. The analysis of variance showed highly significant differences among the treatments for all the 13 traits under study.The genotypes namely CN 1446-5-8-17-1-MLD4 and CR 2706 recorded highest mean performance for panicles per hill and grain yield. The highest genotypic and phenotypic variances (VG and VP) were recorded for spikelets per panicle (3595.78 and 3642.41) followed by biological yield (355.72 and 360.62) and plant height (231.48 and 234.35).High heritability (broad sense) coupled with high genetic advance was observed for plant height, flag leaf length, panicles per hill, tillers per hill, days to maturity, spikelet’s per panicle, biological yield, harvest index, 1000 grain weight and grain yield, indicating that selection will be effective based on these traits because they were under the influence of additive and additive x additive type of gene action. Highest coefficient of variation (PCV and GCV) was recorded for tillers per hill (18.42% and 17.23%), panicle per hill (19.76 % and 18.68%), spikelet’s per panicle (34.30 and34.07 %), biological yield (28.31 % and 28.12 %), 1000 grain weight (15.57 % and 15 31 %) and grain yield (46.66% and 23.54 %), indicating that these traits are under the major influence of genetic control, therefore the above mentioned traits contributed maximum to higher grain yield compared to other traits, indicating grain yield improvement through the associated traits.


Microbiome ◽  
2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Sai Guo ◽  
Wu Xiong ◽  
Xinnan Hang ◽  
Zhilei Gao ◽  
Zixuan Jiao ◽  
...  

Abstract Background Microbiomes play vital roles in plant health and performance, and the development of plant beneficial microbiomes can be steered by organic fertilizer inputs. Especially well-studied are fertilizer-induced changes on bacteria and fungi and how changes in these groups alter plant performance. However, impacts on protist communities, including their trophic interactions within the microbiome and consequences on plant performance remain largely unknown. Here, we tracked the entire microbiome, including bacteria, fungi, and protists, over six growing seasons of cucumber under different fertilization regimes (conventional, organic, and Trichoderma bio-organic fertilization) and linked microbial data to plant yield to identify plant growth-promoting microbes. Results Yields were higher in the (bio-)organic fertilization treatments. Soil abiotic conditions were altered by the fertilization regime, with the prominent effects coming from the (bio-)organic fertilization treatments. Those treatments also led to the pronounced shifts in protistan communities, especially microbivorous cercozoan protists. We found positive correlations of these protists with plant yield and the density of potentially plant-beneficial microorganisms. We further explored the mechanistic ramifications of these relationships via greenhouse experiments, showing that cercozoan protists can positively impact plant growth, potentially via interactions with plant-beneficial microorganisms including Trichoderma, the biological agent delivered by the bio-fertilizer. Conclusions We show that protists may play central roles in stimulating plant performance through microbiome interactions. Future agricultural practices might aim to specifically enhance plant beneficial protists or apply those protists as novel, sustainable biofertilizers.


Agronomy ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 77 ◽  
Author(s):  
Aung Zaw Htwe ◽  
Seinn Moh Moh ◽  
Khin Myat Soe ◽  
Kyi Moe ◽  
Takeo Yamakawa

The use of biofertilizers is important for sustainable agriculture, and the use of nodule bacteria and endophytic actinomycetes is an attractive way to enhance plant growth and yield. This study tested the effects of a biofertilizer produced from Bradyrhizobium strains and Streptomyces griseoflavus on leguminous, cereal, and vegetable crops. Nitrogen fixation was measured using the acetylene reduction assay. Under N-limited or N-supplemented conditions, the biofertilizer significantly promoted the shoot and root growth of mung bean, cowpea, and soybean compared with the control. Therefore, the biofertilizer used in this study was effective in mung bean, cowpea, and soybean regardless of N application. In this study, significant increments in plant growth, nodulation, nitrogen fixation, nitrogen, phosphorus, and potassium (NPK) uptake, and seed yield were found in mung beans and soybeans. Therefore, Bradyrhizobium japonicum SAY3-7 plus Bradyrhizobium elkanii BLY3-8 and Streptomyces griseoflavus are effective bacteria that can be used together as biofertilizer for the production of economically important leguminous crops, especially soybean and mung bean. The biofertilizer produced from Bradyrhizobium and S. griseoflavus P4 will be useful for both soybean and mung bean production.


Author(s):  
Dong Van Nguyen ◽  
Huong Mai Nguyen ◽  
Nga Thanh Le ◽  
Kien Huu Nguyen ◽  
Hoa Thi Nguyen ◽  
...  

2014 ◽  
Vol 5 (1) ◽  
Author(s):  
Heru Kuswantoro

Most of Indonesia dryland is covered by acid soil which lead to the decreasing potential yield of the crops. In different areas soybean potential yield also different depends on the different soil pH and the availability of the soil. The objective of the research was to study the potential yield of soybean promising lines in acid soil of Central Lampung, Indonesia. Ten promising lines and two check varieties (Tanggamus and Wilis) were grown in acid soil with pH 4.7. The results showed that the highest seed yield was showed by SC5P2P3.5.4.1-5 with 2.51 t/ha. Other soybean promising lines with seed yield over than 2 t/ha-1 was SJ-5/Msr.99.5.4.5-1-6-1 and the check variety Tanggamus. The highest yield of SC5P2P3.5.4.1-5 was caused by the high number of filled pods and the large of seed size. Other nine promising lines also can be developed to obtained grain yield as many as Tanggamus yield in the area with similar soil and climate conditions.


Author(s):  
Fen Gao ◽  
Yuanhong Chen ◽  
SeaRa Lim ◽  
Allen Xue ◽  
Bao-Luo Ma

Effective nitrogen (N) management strategies are important for ensuring a balance between optimizing plant growth and minimizing disease damage. A field experiment was conducted for three years to (i) assess the effects of N fertilizer application on the growth and seed yield of canola, and severities of Sclerotinia stem rot (SSR), and (ii) determine a reasonable N-rate for optimizing plant growth and minimizing the loss from SSR in eastern Canada. The experiment was designed with factorial combinations of eight N treatments and two canola hybrids. All N-treatments reduced canola emergence with increasing preplant N application rates above 100 kg ha–1, but had a positive impact on plant height, fresh weight, dry weight and seed yield. The development of SSR showed differential responses to N application rates. Of all the treatments, the split application (50 kg N ha–1 at preplant plus 100 kg N ha–1 side-dressed at the 6-leaf stage) increased canola growth, and often produced the highest or similar seed yields to those of equivalent N rate applied as preplant. At the 150 kg ha–1 N rate, no severe development of SSR was observed in either preplant-only or split application. Overall, this study demonstrates that the split-N management strategy (50+100 kg ha–1) maintained a balance between enhancing plant growth and mitigating the negative impacts of SSR on canola.


2021 ◽  
Vol 11 (01) ◽  
pp. 736-748
Author(s):  
M. M. Hossain ◽  
◽  
S. Yesmin ◽  
M. Z. Islam ◽  
M. A. Hossain ◽  
...  

An experiment was conducted at the Sher-e-Bangla Agricultural University farm from April to June 2017 in Kharif season to evaluate the performance of two mungbean varieties under different NPK fertilizers doses in field conditions. The experiment was laid out in Randomized Complete Block Design (RCBD), comprising six treatments with three replications. In the experiment, varieties used were BARI mung-6 and BARI mung-5 and the combination of the treatment were T0 = (control), T1 (10-40-25 NPK kg ha-1), T2 (10-60-45 NPK kg ha-1), T3 (20-50-35 NPK kg ha-1), T4 (30-40-25 NPK kg ha-1) and T5 (30-40-45 NPK kg ha-1), respectively. Mungbean cultivars responded noticeably to the supplementary NPK fertilizers as the crop characters were significantly influenced by different levels of NPK fertilizers. Data were recorded on plant height, leaves plant-1, branches plant-1, pods plant-1, seeds pod-1, 1000-seed weight, seed, and straw yield at different days after sowing. Of the two varieties, BARI mung-6 gave the highest seed yield (1.72 t ha-1) next to the higher plant growth and straw yield On the contrary, BARI mung-5 cultivar produced the lowest seed yield (1.57t ha-1), plant growth, and straw yield. The results showed that T3 (20-50-35 NPK kg ha-1) treatment was the best treatment as regards plant growth and yield parameters. The highest seed yield was produced by treated plot T3 (20-50-35 NPK kg ha-1) over the untreated control plot, T1, T2, T4, and T5, respectively. As for the combined effect, V1T3 (BARI mung-6 and T3 = 20kg N + 50kg P + 35kg K ha-1) performed the best results in all growth and development characters. Therefore, the combined application of 20-50-35 kg NPK ha-1 might be considered to be found optimal to get a considerable seed yield of mungbean variety BARI mung-6.


Sign in / Sign up

Export Citation Format

Share Document