Partitioning of dry matter into primary branches and pod initiation on the main inflorescence of Lupinus angustifolius

1992 ◽  
Vol 43 (3) ◽  
pp. 685 ◽  
Author(s):  
A Pigeaire ◽  
M Seymour ◽  
R Delane ◽  
CA Atkins

The hypothesis that pod load on the main inflorescence of Lupins angustifolius (L.) is negatively coupled to the amount of dry matter partitioned into primary branches was tested. Growth rates of main stem and primary branches during the period of pod initiation were measured in a series of field experiments at two different sites. Variation in pod set was generated experimentally by varying sowing date or density and by using four cultivars (Yandee, Danja, Gungurru and Warrah). The cultivars differed in their total growth rate, but not in the way dry matter was partitioned into main stem and primary branches. In contrast, significant variation in dry matter partitioning was observed for cv. Danja tested across site and sowing date. With increased plant density, at the same sowing date, the proportion of dry matter allocated to branches increased consistently, even though it decreased in absolute terms, and the number of pods initiated on the main infloresence also decreased consistently. Thus a negative relationship between pod load and the proportion of dry matter allocated into branches was observed as a result of variation in density. However, there was no consistent relationship when variations in pod load were induced by site, date of sowing or cultivar. These data are interpreted to indicate that increased pod initiation on the main inflorescence is not necessarily coupled with decreased partitioning of dry matter into primary branches.

2003 ◽  
Vol 60 (2) ◽  
pp. 253-258 ◽  
Author(s):  
Milton Luiz de Almeida ◽  
Luís Sangoi ◽  
Márcio Ender ◽  
Anderson Fernando Wamser

Plant density is one of the cropping practices that has the largest impact on individual plant growth. This work was conducted to evaluate the response of white oat (Avena sativa) cultivars with contrasting tillering patterns to variations in plant density. Two field experiments were carried out in Lages, SC, Brazil, during the 1998 and 1999 growing seasons. A split plot experimental design was used. Four oat cultivars were tested in the main plots: UFRGS 14, UFRGS 18, UPF 16 and UPF 17 using five plant densities split plots: 50, 185, 320, 455 and 550 plants m-2. Five plant samples were taken 25, 34, 48, 58 and 70 days after plant emergence to assess the treatment effects on dry matter partition between main stem and tillers. UFRGS 18 promoted dry matter allocation to tillers whereas UPF 17 directed dry mass mostly to the main stem. Differences in dry mass allocation between the main stem and tillers had no impact on grain yield, UPF 16 presenting the highest values for both growing seasons. The lack of interaction between population density and cultivar and the small effect of plant population on grain yield indicates that the oat tillering ability is not fundamental to define its grain yield.


2000 ◽  
Vol 135 (4) ◽  
pp. 335-346 ◽  
Author(s):  
A. WILCOX ◽  
N. H. PERRY ◽  
N. D. BOATMAN ◽  
K. CHANEY

Yields of arable crops are commonly lower on the crop margins or headlands, but the nature of the relationship between yield and distance from the crop edge has not been clearly defined, nor have the reasons for lower marginal yields. Surveys of 40 winter wheat headlands were carried out in 2 years to determine how yield changed with distance, and what factors might influence this relationship. Two field experiments were also conducted over 3 years in winter cereal headlands, in which the effect of distance was measured under conservation headland and conventional (fully sprayed) management.Yields in the headland surveys varied from 0·8 to 10·2 t/ha. An inverse polynomial regression model was fitted to yield and weed data. Best fits were obtained by using separate parameters for each site. Adjusting yields to take account of weed dry matter improved the non-linear fit between yield and distance from crop edge. Field experiments provided similar results but the non-linear relationship was not as apparent.There was a negative relationship between soil compaction, as measured by a cone penetrometer, and yield in one field experiment, where soil density values were relatively constant. No relationship was found between pattern of nitrogen fertilizer application and yield. Conservation headland management resulted in lower yield at one experimental site, especially in the third year, but not at the other site. Where yields were affected, weed dry matter was higher in conservation headland plots than in fully sprayed plots.Although greater weed competition appears to account for at least part of the observed yield reductions on headlands, the role of other factors, particularly soil compaction, needs further study. Increased weed infestation may be an indirect result of reduced crop competition caused by other adverse conditions.


1951 ◽  
Vol 41 (3) ◽  
pp. 271-281 ◽  
Author(s):  
E. S. Bunting ◽  
G. E. Blackman

Between 1942 and 1950, some thirty field experiments have been carried out in the southern half of England to assess the potential value, either for grain or forage production, of seventeen openpollinated flint or dent maizes together with twentynine single or double hybrids of American or Canadian origin.Early-maturing flint varieties will consistently ripen grain, but before mechanical threshing or storage, the cobs require drying. Sibthorp, a mass selection made from an unknown German variety, is the earliest and most productive flint maize so far tested, and in the experiments has yielded as much as 39 cwt. of grain per acre with an average of 24 cwt. The earliest American hybrids, i.e. those with a U.S.A. rating of 80 days from sowing to maturity, give very high yields of grain in favourable seasons. Within the group Wisconsin 240–275, a yield level equal to or exceeding 50 cwt./acre has on occasion been recorded. On the other hand, in the most unfavourable years, such hybrids just failed to produce ripe cobs.Attempts to maintain sixty-five parent inlines of the earliest hybrids have largely failed. However, many of the parent single crosses have matured, and the production on a field scale of the double-cross seed of both Wisconsin 240 and 255 has been carried out.Spacing experiments indicate that for optimum grain production a density of 6 plants/sq.yd. is required for both flint varieties and the earliest hybrids. A spatial arrangement of individual plants is to be preferred to that of groups or hills.American hybrids, in the class of ‘90 days’ to maturity, will in all but the most unfavourable seasons reach the ‘early-dent’ stage of the grain before the incidence of autumn frosts. Yields of dry matter of plants harvested in this phase have ranged from 30 to 85 cwt. of dry matter per acre. In these trials, the plant density was standardized at 4 plants/sq.yd. and higher densities may be demanded for optimal yields.The ratio of the ‘ear’ (that is, the cob, immature grain and enclosing leaf sheaths) to the total shoot weight at harvest varies greatly with the variety or hybrid. With White Horsetooth, the usual variety grown for fodder in England, no cobs are formed before the plants are killed by frost, while with the early hybrids, the ear may be half the weight of the whole shoot.The earliest variety Sibthorp from an early May sowing takes approximately 70–80 days to reach full anthesis, while ‘80-day’ American hybrids are a week later. From sowing to full maturity the period in England is from 140 to 160 days, thus compared to conditions in Minnesota the period is nearly twice as long. Because of the much slower rate of development and because of the humidity of English autumns, it is concluded that until the date of maturity can be advanced some 14 days, grain production on a field scale is not yet feasible. On the other hand, many of the American hybrids are well fitted to the production of silage. The greatest drawback to the introduction of such hybrids is the liability of the seed and seedlings to be attacked by rooks.


1986 ◽  
Vol 37 (5) ◽  
pp. 513 ◽  
Author(s):  
R Ferraris ◽  
DA Charles-Edwards

Well-watered crops of sweet sorghum (cv. Wray) and forage sorghum (cv. Silk) were grown in south-eastern Queensland. Treatments consisted of four sowing dates, two intra-row spacings and harvests taken at six physiological growth stages from the third ligule to 3 weeks after grain maturity. Plant density effects on the concentration of sugars and nitrogen were slight, and changes in yields of these components were a function of density effects on dry matter yields. At any growth stage, the concentration of sugars in both cultivars was decreased with delay in sowing date. The delay in sowing date led to an increased nitrogen concentration in cv. Wray, but in cv. Silk the nitrogen concentration was highest in early and late sowings. At maturity, the concentration of sugars in cv. Wray averaged 40'70, 10 times the level in cv. Silk. In both cultivars, accumulation was a near linear function of either time or radiation sum. The partitioning of carbohydrate differed little between cultivars but altered with their ontogeny. The efficiency of light use for sugars production was greater in cv. Wray and altered with ontogeny. In contrast, concentration of nitrogen was similar for both cultivars and decreased curvilinearly with time or degree days. The partitioning of nitrogen altered with ontogeny and the amount partitioned to leaf material was greater in cv. Silk pre-anthesis but was less post-anthesis. Yield of stem sugars in cv. Wray exceeded 10 t ha-1 when the crops were sown early in the season, but was only 3 t ha-1 with late-sown crops.


2002 ◽  
Vol 42 (8) ◽  
pp. 1043 ◽  
Author(s):  
M. Seymour ◽  
K. H. M. Siddique ◽  
N. Brandon ◽  
L. Martin ◽  
E. Jackson

The response of Vicia sativa (cvv. Languedoc, Blanchefleur and Morava) and V. benghalensis (cv. Barloo) seed yield to seeding rate was examined in 9 field experiments across 2 years in south-western Australia. There were 2 types of field experiments: seeding rate (20, 40, 60, 100 and 140 kg/ha) × cultivar (Languedoc, Blanchefleur, and Morava or Barloo), and time of sowing (2 times of sowing of either Languedoc or Blanchefleur) × seeding rate (5,�7.5, 10, 15, 20, 30, 40, 50, 75 and 100 kg/ha).A target density of 40 plants/m2 gave 'optimum' seed yield of vetch in south-western Australia. In high yielding situations, with a yield potential above 1.5 t/ha, the 'optimum' plant density for the early flowering cultivar Languedoc (85–97 days to 50% flowering) was increased to 60 plants/m2. The later flowering cultivar Blanchefleur (95–106 days to 50% flowering) had an optimum plant density of 33 plants/m2 at all sites, regardless of fitted maximum seed yield. Plant density in the range 31–38 plants/m2 was found to be adequate for dry matter production at maturity of Languedoc and Blanchefleur. For the remaining cultivars Barloo and Morava we were unable to determine an average optimum density for either dry matter or seed yield due to insufficient and/or inconsistent data.


1990 ◽  
Vol 114 (3) ◽  
pp. 309-320 ◽  
Author(s):  
B. A. McKenzie ◽  
G. D. Hill

SUMMARYLentils (Lens culinaris Medik.) were sown on eight sowing dates from April to November in two seasons in Canterbury, New Zealand. In 1984/85, six sowing dates were combined with two lentil cultivars (Olympic and Titore) and two irrigation treatments. In 1985/86, Titore was sown on two dates, with four irrigation treatments. An additional experiment grown under rain shelters examined the response of Titore to four irrigation regimes. The 1984/85 season was dry and rainfall was only 70% of the long-term mean. In this season, seed yield was high, 3·3 t/ha from the May sowing. The 1985/86 season was wetter than average and seed yields were lower, ranging from 0·6 to 1·5 t/ha. Under rain shelters, seed yield ranged from the equivalent of 0·32 to 2·5 t/ha.Sowing date had the most marked effect on seed yield. In the 1984/85 season, all autumn and winter sowings yielded 2·4–3·3 t/ha, whereas the spring sowings yielded 0·5–1·5 t/ha. In 1985/86, unirrigated plots from the May sowing yielded 1·5 t/ha, whereas all other plots yielded c. 0·8 t/ha.Generally, the small-seeded cultivar Titore outyielded Olympic. Dry matter (DM) accumulation followed similar trends to seed yield. Seasonal DM accumulation followed a sigmoidal curve. Functional growth analysis indicated that plants from autumn/winter sowings had a weighted mean absolute growth rate of 110–171 kg/ha per day, whereas spring-sown plants grew at 96–137 kg/ha per day. The maximum crop growth rate was 230 kg/ha per day in the July 1984 sowing.There was little positive response to irrigation in both seasons. Under rain shelters, there was a linear increase in both dry matter and seed production with increased total water. Fully irrigated plants produced 1·27 g DM and 0·72 g seed/m2 per mm of water received.In the field experiments there was no relationship between maximum potential soil moisture deficit (D) and yield. Under rain shelters, however, there was a linear relationship which indicated a limiting deficit of c. 130 mm. The relationship showed that, for each millimetre increase in D above D1, 0·39% of the maximum yield was lost.Under the rain shelters, there was a strong relationship between yield and actual evapotranspiration (ET). Water-use efficiency (WUE) ranged from 2·81 g DM/m2 per mm ET in unirrigated plots to 0·69 g seed/m2 per mm ET.The results showed that lentil growers in Canterbury, and presumably in similar environments, are unlikely to benefit from irrigating their crops. In such environments, lentils appear to be an ideal dryland crop.


2021 ◽  
Author(s):  
◽  
James Barritt

<p>This thesis presents a spatially explicit, agent based simulation, used to explore the ovipositing behaviour of the Small Cabbage White butterfly, Pieris rapae (Lepidoptera). The study concerns the effects of host-plant (Cabbage, Brassica oleracae) density upon P. rapae egg distribution patterns, at multiple scales. A general review of the literature is provided which covers the ecology of animal movement, methods of quantifying movement, models of movement, ecological theory of herbivore responses to plant density (Resource Concentration Hypothesis) and the biology of P.rapae.  The construction of the simulation is described in detail and the source code plus an executable version of the software are available as a companion CD. A number of simulation experiments are reported which demonstrate the basic behaviour of the simulation over a simplified resource layout. The framework is then used to explore more complex layouts which are compared to field experiments conducted as part of a separate PhD thesis (Hasenbank, in prep). A Correlated Random Walk simulated a negative relationship between forager egg distributions and resource densities, observed at all scales. Including a diffuse attraction to resources (e.g. olfaction), simulated a negative relationship between egg distributions and resource densities at smaller scales, and a positive relationship at larger scales.  This work builds on a large body of previous simulation studies and attempts to produce a useful framework for subsequent researchers to explore the effects of animal movement through the use of random walks. It demonstrates the use of the framework with a specific example concerning the egg distributions of P. rapae and the effect of scale. It provides some useful insights into both the analysis of results from a complex spatial experimental layout, and potential responses which may be observed. It demonstrates that a simple model can, in the case of P rapae be used to obtain relatively realistic egg distributions.</p>


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
M. I. Tajul ◽  
M. M. Alam ◽  
S. M. M. Hossain ◽  
K. Naher ◽  
M. Y. Rafii ◽  
...  

Field experiments were conducted to evaluate plant population and N-fertilizer effects on yield and yield components of maize (Zea maysL.). Three levels of plant populations (53000, 66000, and 800000 plants ha−1corresponding to spacings of 75 × 25, 60 × 25, and 50 × 25 cm) and 4 doses of N (100, 140, 180, and 220 kg ha−1) were the treatment variables. Results revealed that plant growth, light interception (LI), yield attributes, and grain yield varied significantly due to the variations in population density and N-rates. Crop growth rate (CGR) was the highest with the population of 80,000 ha−1receiving 220 kg N ha−1, while relative growth rate (RGR) showed an opposite trend of CGR. Light absorption was maximum when most of densely populated plant received the highest amount of N (220 kg N ha−1). Response of soil-plant-analysis development (SPAD) value as well as N-content to N-rates was found significant. Plant height was the maximum at the lowest plant density with the highest amount of N. Plants that received 180 kg N ha−1with 80,000 plants ha−1had larger foliage, greater SPAD value, and higher amount of grains cob−1that contributed to the maximum yield (5.03 t ha−1) and the maximum harvest index (HI) compared to the plants in other treatments.


1989 ◽  
Vol 112 (3) ◽  
pp. 359-375 ◽  
Author(s):  
A. E. Abuzeid ◽  
S. J. Wilcockson

SummaryIn field experiments in 1983–85 in Northumberland, UK, early sowings achieved a leaf area index (LAI) of 3·5, capable of intercepting 90–95% total incident solar radiation, earlier than late sowings. As there was a close relationship between total dry weight, bud dry weight and amount of intercepted solar radiation, early sowings invariably outyielded later ones. The efficiency of energy conversion of radiation was 1·28, 2·05 and 2·11 g/MJ for total dry weight and 0·97, 0·83 and 0·67 g/MJ for bud dry weight in 1983, 1984 and 1985, respectively. Harvest index ranged from ca. 25% in 1985 to 40% in 1984.Increasing plant density from 2·22 to 6·66 plants/m2 advanced and increased maximum LAI and total and bud dry weight per m2 but had an adverse effect on distribution of dry matter. Maximum total dry weights were achieved at or slightly after maximum LAI. The onset of rapid bud growth coincided with maximum total standing dry weight and was advanced by early sowing but largely unaffected by plant density.Early-sown crops produced more buds than late-sown ones because of a longer growing season. Plant density had a large effect on the number of buds per m2, which was almost directly proportional as the number of buds per plant was not severely affected. However, individual bud size was restricted as a result of competition for assimilates. Approximately 80% of buds finally recorded had been produced before significant bud growth had occurred.Total bud fresh yields averaged over all sowing dates reached 17 t/ha in 1983 and 31 t/ha in 1984. The lower yield in 1983 was the result of late sowing caused by unfavourable weather. Early sowings significantly outyielded late ones because of earlier onset of rapid bud growth which gave a longer growing period. The effect of plant density on total sprout yield was less pronounced than that of sowing date but effects on yield per plant were large.Yields of buds in the freezing grade (20–30 mm) increased rapidly between late September and early to mid-November in both 1983 and 1984 and reached 7·5 and 8·8 t/ha, respectively. The difference between freezing-grade yields in the two years (1·3 t/ha) was much less than the difference between total yields (14 t/ha). Late sowing in 1983 restricted bud growth resulting in a higher proportion in the freezing grade. Plant density had a greater effect on freezing-grade yield than on total yield. Low planting densities gave high yields of small buds at early harvests but denser planting gave higher yields at later harvests. Generally, increases in bud fresh weight over the harvest period were greater than those in bud dry weight because of water uptake. The average dry matter content of buds declined by 2–5 % from October to January.The experiments confirmed that manipulation of sowing date and planting density is an effective way of spreading harvest date throughout the season in order to achieve an orderly sequence of crops for the fresh market and for processing.


Sign in / Sign up

Export Citation Format

Share Document