Preparation and Gas Sensing Properties of Hierarchical Flower-Shaped Bi2WO6

2016 ◽  
Vol 69 (1) ◽  
pp. 107 ◽  
Author(s):  
Jingkun Xiao ◽  
Chengwen Song ◽  
Wei Dong ◽  
Yanyan Yin ◽  
Chen Li

Hierarchical flower-shaped Bi2WO6 was obtained by a simple hydrothermal method. Morphology and structure of the Bi2WO6 were characterised by single electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and N2 adsorption techniques. Gas sensing properties of the Bi2WO6 sensor were investigated by a static gas-sensing system. The results show the as-synthesised flower-shaped product is pure orthorhombic Bi2WO6, which is composed of nanosheets with ~10–20 nm in thickness and hundreds of nanometres in planar size. At this optimal operating temperature of 300°C, the Bi2WO6 sensor exhibits ultra-fast response (1-2 s) and fast recovery time (6–12 s) towards ethanol detection, and high selectivity to other gases such as methanol, benzene, dichloromethane, and hexane.

2021 ◽  
Author(s):  
Merve ZEYREK ONGUN ◽  
Sibel OGUZLAR ◽  
Alper S. Akalin ◽  
Serdar Yildirim

Abstract Barium stannate (BaSnO3) particles were synthesized using a one-step flame spray pyrolysis (FSP) method. The fabricated ceramic powders were investigated in terms of the structural, morphological, and optical properties by using X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), X-Ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), zeta particle size analyzer, UV-visible spectroscopy (UV-vis) and photoluminescence spectroscopy (PL). The XRD results showed the structure of BaSnO3 crystals have been obtained when the powders were exposed at high temperature, specifically at 1200 °C. The synthesized particles in the submicron size in a range of 70-980 nm were produced. The optical band gap value of the synthesized crystals was calculated by means of reflectance spectra with the Kubelka-Munk method and found as 3.14 eV. When the powders excited at 375 nm, they exhibited emission bands in the visible and near-infrared region (NIR) of the electromagnetic spectrum. As far as we know, this is the first time BaSnO3 crystals have been synthesized using the FSP technique. In this study, the intensity- and decay time- based gas sensing properties of BaSnO3 embedded in ethyl cellulose thin films when exposed to the vapors of ethanol, acetone, and ammonia were also measured.


2021 ◽  
Author(s):  
Pimpan Leangtanom ◽  
Anurat Wisitsoraat ◽  
Kata Jaruwongrangsee ◽  
Narong Chanlek ◽  
Adisorn Tuantranont ◽  
...  

Abstract In this work, CuO-loaded tetragonal SnO2 nanoparticles (CuO/SnO2 NPs) were synthesized using precipitation/impregnation methods with varying Cu contents of 0–25 wt% and characterized for H2S detection. The material phase, morphology, chemical composition and specific surface area of NPs were evaluated using X-ray diffraction, transmission electron microscopy, scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy and Brunauer-Emmett-Teller analysis. From gas-sensing data, the H2S responses of SnO2 NPs were greatly enhanced by CuO loading particularly at the optimal Cu content of 20 wt%. The 20 wt%CuO/SnO2 sensor showed an excellent response of 1.36⋅105 towards 10 ppm H2S and high H2S selectivity against H2, SO2, CH4 and C2H2 at a low optimum working temperature of 200°C. In addition, the sensor provided fast response and a low detection limit of less than 0.15 ppm. The CuO-SnO2 sensor could therefore be a potential candidate for H2S detection in environmental applications.


Chemosensors ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 67 ◽  
Author(s):  
Bharat Sharma ◽  
Ashutosh Sharma ◽  
Monika Joshi ◽  
Jae-ha Myung

A highly sensitive and selective NO2 gas sensor dependent on SnO2/ZnO heterostructures was fabricated using a sputtering process. The SnO2/ZnO heterostructure thin film samples were characterized by field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), Energy-dispersive X-ray spectroscopy (EDS), and X-ray photoelectron spectroscopy (XPS). Sensors fabricated with heterostructures attained higher gas response (S = 66.9) and quicker response-recovery (20 s, 45 s) characteristics at 100 °C operating temperature towards 100 ppm NO2 gas efficiently in comparison to sensors based on their mono-counterparts. The selectivity and stability of SnO2/ZnO heterostructures were studied. The more desirable sensing mechanism of SnO2/ZnO heterostructures towards NO2 was described in detail.


2019 ◽  
Vol 33 (25) ◽  
pp. 1950297
Author(s):  
Xiang-Bing Li ◽  
Shu-Yi Ma ◽  
Fu-Rong Li ◽  
Yu-Xiang Zhao ◽  
Xiao-Bin Liu ◽  
...  

The properties of nanomaterials usually depend on their microstructures, the same material of different microstructures could be used for various applications. However, most devices could only synthesize a single microstructure, so it is meaningful that the different microstructures were synthesized by one method. In our study, electrospinning was applied to fabricate ZnO nanofibers and nanoparticles. In this approach, Zn(Ac)/PVP composite fibers of different component ratio were synthesized by electrospinning method which was subsequently calcined and formed ZnO nanofibers and nanoparticles. The microstructure, chemical composition and gas sensing were investigated with scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy and WS-60A gas sensing measurement system. The synthesis mechanisms of ZnO nanofibers and nanoparticles were discussed in detail.


2018 ◽  
Vol 11 (04) ◽  
pp. 1850071 ◽  
Author(s):  
Dongping Xue ◽  
Zhanying Zhang

Au-sensitized WO3 nanoparticles have been synthesized by a facile two-step hydrothermal method. The structures, morphologies and surface compositions of the materials were characterized by X-ray diffraction (XRD), energy dispersive spectroscopy (EDS) and scanning electron microscopy (SEM). The test results show that we have prepared higher purity Au-sensitized WO3 nanoparticles. The gas-sensing properties of pure and Au-sensitized WO3 nanoparticles on acetone vapor were further investigated. The results obtained show that the response-recovery time of the two samples prepared is relatively short compared to that reported in the current literature. The Au-sensitized WO3 nanoparticles are significantly more sensitive and selective than the pure WO3 nanoparticles. This may be mainly attributed to the synergy between Au and WO3. It is expected that the Au-sensitized WO3 nanoparticles thus prepared can also be used for research in other fields.


2013 ◽  
Vol 645 ◽  
pp. 129-132 ◽  
Author(s):  
Jantasom Khanidtha ◽  
Suttinart Noothongkaew ◽  
Supakorn Pukird

SnO2-CuO nanocomposites have been synthesized with the simple co-precipitation method for gas sensing properties. Sn and CuO powder were the starting materials. The synthesized products were investigated by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results show that SnO2-CuO nanocomposites have a tetragonal and monoclinic structure, respectively. SEM images verify that the some microballs are up to 10 µm and nanorods have a diameter range from 10-100 nm, while length ranges a few micrometers. The nanocomposite products were highly sensitivity to CO2gas at room temperature.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Pimpan Leangtanom ◽  
Anurat Wisitsoraat ◽  
Kata Jaruwongrangsee ◽  
Narong Chanlek ◽  
Adisorn Tuantranont ◽  
...  

AbstractIn this work, CuO-loaded tetragonal SnO2 nanoparticles (CuO/SnO2 NPs) were synthesized using precipitation/impregnation methods with varying Cu contents of 0–25 wt% and characterized for H2S detection. The material phase, morphology, chemical composition, and specific surface area of NPs were evaluated using X-ray diffraction, transmission electron microscopy, scanning electron microscopy, energy-dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, and Brunauer–Emmett–Teller analysis. From gas-sensing data, the H2S responses of SnO2 NPs were greatly enhanced by CuO loading particularly at the optimal Cu content of 20 wt%. The 20 wt% CuO/SnO2 sensor showed an excellent response of 1.36 × 105 toward 10 ppm H2S and high H2S selectivity against H2, SO2, CH4, and C2H2 at a low optimum working temperature of 200 °C. In addition, the sensor provided fast response and a low detection limit of less than 0.15 ppm. The CuO–SnO2 sensor could therefore be a potential candidate for H2S detection in environmental applications.


Author(s):  
R.H. Bari ◽  
S.B. Patil

The objective of this work is to study the influence of pyrolysis temperature on structural, surface morphology and gas sensing properties of the nanostructured SnO2 thin films prepared by spray pyrolysis technique. These films were characterized for the structural, morphological and elemental composition carried by means of X-ray diffraction (XRD), scanning electron mi­croscopy (SEM) and energy dispersive spectrophotometer (EDAX). The information of crystallite size, dislocation density and microstrain is obtained from the full width-at half- maximum (FWHM) of the diffraction peaks. Effect of sprayed deposition temperature on H2 gas sensing performance and electrical properties were studied using static gas sensing system. The sensor (Tpyr. = 350°C) showed high gas response (S = 1200 at 350 °C) on exposure of 500 ppm of H2 and high selectivity against other gases The results are discussed and interpreted.


2010 ◽  
Vol 654-656 ◽  
pp. 1154-1157 ◽  
Author(s):  
Yu Lu ◽  
Wei Jin ◽  
Wen Chen

Polythiophene (PTP) coated V2O5 nanotubes were prepared by an in-situ polymerization of thiophene monomers in the presence of prepared V2O5 nanotubes. The nanotubes were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM), which proved the polymerization of thiophene monomer and the strong interaction between polythiophene and V2O5 nanotubes (VONTs). The gas sensing properties of PTP coated V2O5 nanotubes were studied at room temperature, which was found that PTP coated V2O5 nanotubes could detect ethanol with much higher sensitivity than pure VONTs. The sensing mechanism of PTP coated V2O5 nanotubes to ethanol is presumed to be the synergetic interaction between polythiophene (PTP) and V2O5 nanotubes.


2008 ◽  
Vol 8 (8) ◽  
pp. 4106-4110 ◽  
Author(s):  
Manmeet Kaur ◽  
Shovit Bhattacharya ◽  
Vibha Saxena ◽  
D. K. Aswal ◽  
Mainak Roy ◽  
...  

ZnO nanotetrapods have been obtained in large quantities by carbothermal reduction of ZnO powder. These were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, transmission electron microscopy, selected area electron diffraction, UV-visible spectroscopy and photoluminescence. Electron microscopy revealed that the overall size of the tetrapods is 1.5–2 μm and legs are 30–50 nm in diameter. The size of tetrapods as well as diameter of the legs was found to increase with deposition temperature. Photoluminescence spectra revealed that green emission originating from oxygen vacancies overwhelmed that of the near-band-edge ultraviolet peak. A band gap of 3.27 eV was calculated from optical absorption spectra which agreed well with that estimated from PL spectra. Gas sensing properties of tetrapods were investigated and these were found to be 5 times more sensitive to H2S gas at room temperature in comparison to ZnO bulk polycrystalline material.


Sign in / Sign up

Export Citation Format

Share Document