Growth, Characterization and Gas Sensing Properties of Nanotetrapod ZnO

2008 ◽  
Vol 8 (8) ◽  
pp. 4106-4110 ◽  
Author(s):  
Manmeet Kaur ◽  
Shovit Bhattacharya ◽  
Vibha Saxena ◽  
D. K. Aswal ◽  
Mainak Roy ◽  
...  

ZnO nanotetrapods have been obtained in large quantities by carbothermal reduction of ZnO powder. These were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, transmission electron microscopy, selected area electron diffraction, UV-visible spectroscopy and photoluminescence. Electron microscopy revealed that the overall size of the tetrapods is 1.5–2 μm and legs are 30–50 nm in diameter. The size of tetrapods as well as diameter of the legs was found to increase with deposition temperature. Photoluminescence spectra revealed that green emission originating from oxygen vacancies overwhelmed that of the near-band-edge ultraviolet peak. A band gap of 3.27 eV was calculated from optical absorption spectra which agreed well with that estimated from PL spectra. Gas sensing properties of tetrapods were investigated and these were found to be 5 times more sensitive to H2S gas at room temperature in comparison to ZnO bulk polycrystalline material.

2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Xiangfeng Chu ◽  
Junsong Liu ◽  
Shiming Liang ◽  
Linshan Bai ◽  
Yongping Dong ◽  
...  

In this paper, g-C3N4-WO3 composite materials were prepared by hydrothermal processing. The composites were characterized by means of X-ray powder diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and N2 adsorption-desorption, respectively. The gas sensing properties of the composites were investigated. The results indicated that the addition of appropriate amount of g-C3N4 to WO3 could improve the response and selectivity to acetone. The sensor based on 2 wt% g-C3N4-WO3 composite showed the best gas sensing performances. When operating at optimum temperature of 310°C, the responses to 1000 ppm and 0.5 ppm acetone were 58.2 and 1.6, respectively, and the ratio of the S1000 ppm acetone to S1000 ppm ethanol reached 3.7.


2021 ◽  
Author(s):  
Merve ZEYREK ONGUN ◽  
Sibel OGUZLAR ◽  
Alper S. Akalin ◽  
Serdar Yildirim

Abstract Barium stannate (BaSnO3) particles were synthesized using a one-step flame spray pyrolysis (FSP) method. The fabricated ceramic powders were investigated in terms of the structural, morphological, and optical properties by using X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), X-Ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), zeta particle size analyzer, UV-visible spectroscopy (UV-vis) and photoluminescence spectroscopy (PL). The XRD results showed the structure of BaSnO3 crystals have been obtained when the powders were exposed at high temperature, specifically at 1200 °C. The synthesized particles in the submicron size in a range of 70-980 nm were produced. The optical band gap value of the synthesized crystals was calculated by means of reflectance spectra with the Kubelka-Munk method and found as 3.14 eV. When the powders excited at 375 nm, they exhibited emission bands in the visible and near-infrared region (NIR) of the electromagnetic spectrum. As far as we know, this is the first time BaSnO3 crystals have been synthesized using the FSP technique. In this study, the intensity- and decay time- based gas sensing properties of BaSnO3 embedded in ethyl cellulose thin films when exposed to the vapors of ethanol, acetone, and ammonia were also measured.


Nanomaterials ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 1902
Author(s):  
Sijie Wang ◽  
Weigen Chen ◽  
Jian Li ◽  
Zihao Song ◽  
He Zhang ◽  
...  

The long-term stability and the extension of the use time of gas sensors are one of the current concerns. Lowering the working temperature is one of the most effective methods to delay aging. In this paper, pure MoS2 and ZnO-MoS2 nanocomposites were successfully prepared by the hydrothermal method, and the morphological characteristics were featured by scanning electron microscopy (SEM), X-ray diffraction (XRD), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). Pure MoS2 and ZnO-MoS2 nanocomposites, as a comparison, were used to study the aging characteristic. The sensing properties of the fabricated gas sensors with an optimal molar ratio ZnO-MoS2 (Zn:Mo = 1:2) were recorded, and the results exhibit a high gas-sensing response and good repeatability to the acetylene detection. The working temperature was significantly lower than for pure MoS2. After aging for 40 days, all the gas-sensing response was relatively attenuated, and pure MoS2 exhibits a faster decay rate and lower gas-sensing response than nanocomposites. The better gas-sensing characteristic of nanocomposites after aging was possibly attributed to the active interaction between ZnO and MoS2.


2019 ◽  
Vol 33 (25) ◽  
pp. 1950297
Author(s):  
Xiang-Bing Li ◽  
Shu-Yi Ma ◽  
Fu-Rong Li ◽  
Yu-Xiang Zhao ◽  
Xiao-Bin Liu ◽  
...  

The properties of nanomaterials usually depend on their microstructures, the same material of different microstructures could be used for various applications. However, most devices could only synthesize a single microstructure, so it is meaningful that the different microstructures were synthesized by one method. In our study, electrospinning was applied to fabricate ZnO nanofibers and nanoparticles. In this approach, Zn(Ac)/PVP composite fibers of different component ratio were synthesized by electrospinning method which was subsequently calcined and formed ZnO nanofibers and nanoparticles. The microstructure, chemical composition and gas sensing were investigated with scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy and WS-60A gas sensing measurement system. The synthesis mechanisms of ZnO nanofibers and nanoparticles were discussed in detail.


2014 ◽  
Vol 809-810 ◽  
pp. 724-730
Author(s):  
Zan Li ◽  
Wei Qin ◽  
Xiao Hong Wu

Al-doped ZnO (AZO) powers with a novel rice-like morphology have been successfully synthesized through a simple and efficient hydrothermal approach, the products have been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) with an energy-dispersive X-ray analyzer and transmission electron microscopy (TEM). It showed that all the samples presented an hexagonal wurtzite structure of high crystallinity, and the microstructure was composed of numerous dumbbells. Furthermore, the heater gas sensors were fabricated and an investigation of gas sensing properties has been conducted. The sensors showed good selectivity to ethanol comparing with NH3, SO2, CO and HCHO and possible mechanism was discussed. The Sensors based AZO powers exhibited high response values, reproducible response-recovery to ethanol 50-1800 ppm at 332°C.


2016 ◽  
Vol 69 (1) ◽  
pp. 107 ◽  
Author(s):  
Jingkun Xiao ◽  
Chengwen Song ◽  
Wei Dong ◽  
Yanyan Yin ◽  
Chen Li

Hierarchical flower-shaped Bi2WO6 was obtained by a simple hydrothermal method. Morphology and structure of the Bi2WO6 were characterised by single electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and N2 adsorption techniques. Gas sensing properties of the Bi2WO6 sensor were investigated by a static gas-sensing system. The results show the as-synthesised flower-shaped product is pure orthorhombic Bi2WO6, which is composed of nanosheets with ~10–20 nm in thickness and hundreds of nanometres in planar size. At this optimal operating temperature of 300°C, the Bi2WO6 sensor exhibits ultra-fast response (1-2 s) and fast recovery time (6–12 s) towards ethanol detection, and high selectivity to other gases such as methanol, benzene, dichloromethane, and hexane.


2010 ◽  
Vol 654-656 ◽  
pp. 1154-1157 ◽  
Author(s):  
Yu Lu ◽  
Wei Jin ◽  
Wen Chen

Polythiophene (PTP) coated V2O5 nanotubes were prepared by an in-situ polymerization of thiophene monomers in the presence of prepared V2O5 nanotubes. The nanotubes were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM), which proved the polymerization of thiophene monomer and the strong interaction between polythiophene and V2O5 nanotubes (VONTs). The gas sensing properties of PTP coated V2O5 nanotubes were studied at room temperature, which was found that PTP coated V2O5 nanotubes could detect ethanol with much higher sensitivity than pure VONTs. The sensing mechanism of PTP coated V2O5 nanotubes to ethanol is presumed to be the synergetic interaction between polythiophene (PTP) and V2O5 nanotubes.


Sensors ◽  
2019 ◽  
Vol 20 (1) ◽  
pp. 46 ◽  
Author(s):  
Pi-Guey Su ◽  
Xiang-Hong Liu

A novel double-shelled hollow (DSH) structure of ZnTiO3 microrods was prepared by self-templating route with the assistance of poly(diallyldimethylammonium chloride) (PDDA) in an ethylene glycol (EG) solution, which was followed by calcining. Moreover, the NH3 gas-sensing properties of the DSH ZnTiO3 microrods were studied at room temperature. The morphology and composition of DSH ZnTiO3 microrods films were analyzed using scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffractometry (XRD). The formation process of double-shelled hollow microrods was discussed in detail. The comparative gas-sensing results revealed that the DSH ZnTiO3 microrods had a higher response to NH3 gas at room temperature than those of the TiO2 solid microrods and DSH ZnTiO3 microrods did in the dark. More importantly, the DSH ZnTiO3 microrods exhibited a strong response to low concentrations of NH3 gas at room temperature.


Sensors ◽  
2019 ◽  
Vol 19 (20) ◽  
pp. 4563 ◽  
Author(s):  
Juan Casanova-Cháfer ◽  
Rocío García-Aboal ◽  
Pedro Atienzar ◽  
Eduard Llobet

This paper explores the gas sensing properties of graphene nanolayers decorated with lead halide perovskite (CH3NH3PbBr3) nanocrystals to detect toxic gases such as ammonia (NH3) and nitrogen dioxide (NO2). A chemical-sensitive semiconductor film based on graphene has been achieved, being decorated with CH3NH3PbBr3 perovskite (MAPbBr3) nanocrystals (NCs) synthesized, and characterized by several techniques, such as field emission scanning electron microscopy, transmission electron microscopy and X-ray photoelectron spectroscopy. Reversible responses were obtained towards NO2 and NH3 at room temperature, demonstrating an enhanced sensitivity when the graphene is decorated by MAPbBr3 NCs. Furthermore, the effect of ambient moisture was extensively studied, showing that the use of perovskite NCs in gas sensors can become a promising alternative to other gas sensitive materials, due to the protective character of graphene, resulting from its high hydrophobicity. Besides, a gas sensing mechanism is proposed to understand the effects of MAPbBr3 sensing properties.


Author(s):  
S. Kumar ◽  
P. Gowthaman ◽  
J. Deenathayalan

Electro spinning technology combined with chemical precipitation method and high-temperature calcination was used to prepare SnO2-NiO composite semiconductor nanofibers with different Sn content. Scanning electron microscope (SEM), X-ray diffractometer (XRD) and energy dispersive X-ray spectrometer (EDS) were used to characterize the morphology, structure and content of various elements of the sample. Using ethanol as the target gas, the gas sensing properties of SnO2-NiO nanofibers and the influence of Sn content on the gas sensing properties of composite nanofibers were explored. The research results show that SnO2-NiO composite nanofibers have a three-dimensional network structure, and the SnO2 composite can significantly enhance the gas sensitivity of NiO nanofibers. With increase of SnO2 content, the response sensitivity of composite fibers to ethanol gas increases, and the response sensitivity of composite nanofibers with the highest response to ethanol gas with a volume fraction of 100×10-6 at the optimal working temperature of 160℃ are13.4;It is 8.38 times the maximum response sensitivity of NiO nanofibers. Compared with the common ethanol gas sensor MQ-3 on the market, SnO2-NiO composite nanofibers have a lower optimal working temperature and higher response sensitivity, which has certain practical application value


Sign in / Sign up

Export Citation Format

Share Document