Pyramiding adult-plant powdery mildew resistance QTLs in bread wheat

2012 ◽  
Vol 63 (7) ◽  
pp. 606 ◽  
Author(s):  
B. Bai ◽  
Z. H. He ◽  
M. A. Asad ◽  
C. X. Lan ◽  
Y. Zhang ◽  
...  

Pyramiding of quantitative trait loci (QTLs) can be an effective approach for developing durable resistance to powdery mildew in wheat (Triticum aestivum L.). The Chinese wheat cultivars Bainong 64 and Lumai 21, with outstanding agronomic traits, possess four and three QTLs, respectively, for adult-plant resistance (APR) to powdery mildew. To achieve optimal durable resistance, 21 F6 lines combining two–five powdery mildew APR QTLs were developed from the cross Bainong 64/Lumai 21 using a modified pedigree selection. These lines were planted in a randomised complete block design with two replicates in Beijing during the 2009–10 and 2010–11 cropping seasons, and were evaluated for powdery mildew response using the highly virulent Blumeria graminis f. sp. tritici isolate E20. Based on the phenotypic data of both maximum disease severity (MDS) and area under the disease progress curve (AUDPC), analysis of variance indicated that there were highly significant effects of QTL combinations on reducing powdery mildew MDS and AUDPC. Six pyramided QTL combinations possessing QPm.caas-1A and QPm.caas-4DL in common along with one or more of the others expressed better APR to powdery mildew than the more resistant parent, Bainong 64. Thus, pyramiding these two QTLs with one or more of QPm.caas-2BS, QPm.caas-2BL, and QPm.caas-2DL from Lumai 21 could be a desirable strategy to breed cultivars with high levels of durable resistance to powdery mildew. Experienced breeders with a good knowledge of minor genes can achieve APR by phenotypic selection, and selection by molecular markers will still require uniform field testing for powdery mildew and disease phenotype to validate the resistance. These results provided very useful information for pyramiding APR QTLs in wheat breeding programs.

2021 ◽  
Author(s):  
Mateusz Maksymilian Dyda ◽  
Mirosław Tyrka ◽  
Gabriela Gołębiowska ◽  
Marcin Rapacz ◽  
Maria Wędzony

Abstract Triticale is a cereal of high economic importance, however along with the increase in the area of this cereal, it is more often infected by the fungal pathogen Blumeria graminis, which causes powdery mildew. The rapid development of molecular biology techniques, in particular methods based on molecular markers may be an important tool used in modern plant breeding. Development of genetic maps, location of the QTLs defining the region of the genome associated with resistance and selection of markers linked to particular trait can be used to select resistant genotypes as well as to pyramidize several resistance genes in one variety. In this paper we present a new, high-density genetic map of triticale doubled haploids (DH) population ‘Grenado’ x ‘Zorro’ composed of DArT, silicoDArT and SNP markers. Composite interval mapping method was used to detect eight QTL regions associated with the area under disease progress curve (AUDPC) and 15 regions with the average value of powdery mildew infection (avPM) based on observation conducted in 3-year period in three different locations across the Poland. Two regions on rye chromosome 4R, and single loci on 5R and 6R were reported for the first time as regions associated with powdery mildew resistance. Among all QTLs, 14 candidate genes were identified coded cyclin-dependent kinase, serine/threonine-protein kinase-like protein as well as AMEIOTIC 1 homolog DYAD-like protein, DETOXIFICATION 16-like protein and putative disease resistance protein RGA3. Three of identified candidate genes were found among newly described QTL regions associated with powdery mildew resistance in triticale.


Plant Disease ◽  
2005 ◽  
Vol 89 (5) ◽  
pp. 457-463 ◽  
Author(s):  
Z. L. Wang ◽  
L. H. Li ◽  
Z. H. He ◽  
X. Y. Duan ◽  
Y. L. Zhou ◽  
...  

Powdery mildew, caused by Blumeria graminis f. sp. tritici, is a widespread wheat disease in China. Identification of race-specific genes and adult plant resistance (APR) is of major importance in breeding for an efficient genetic control strategy. The objectives of this study were to (i) identify genes that confer seedling resistance to powdery mildew in Chinese bread wheat cultivars and introductions used by breeding programs in China and (ii) evaluate their APR in the field. The results showed that (i) 98 of 192 tested wheat cultivars and lines appear to have one or more resistance genes to powdery mildew; (ii) Pm8 and Pm4b are the most common resistance genes in Chinese wheat cultivars, whereas Pm8 and Pm3d are present most frequently in wheat cultivars introduced from CIMMYT, the United States, and European countries; (iii) genotypes carrying Pm1, Pm3e, Pm5, and Pm7 were susceptible, whereas those carrying Pm12, Pm16, and Pm20 were highly resistant to almost all isolates of B. graminis f. sp. tritici tested; and (iv) 22 genotypes expressed APR. Our data showed that the area under the disease progress curve, maximum disease severity on the penultimate leaf, and the disease index are good indicators of the degree of APR in the field. It may be a good choice to combine major resistance genes and APR genes in wheat breeding to obtain effective resistance to powdery mildew.


2020 ◽  
Vol 55 (1) ◽  
pp. 3-10
Author(s):  
M. I. E. Arabi ◽  
M. Jawhar ◽  
E. Al-Shehadah

Powdery mildew (Blumeria graminis) is a major fungal disease of barley causing economical yield losses worldwide. Breeding for resistance to this disease is crucial due to the rapid change in pathotype patterns of B. graminis in fields. In the present work, powdery mildew-resistant barley germplasm was developed by crossing four cultivars currently used in Europe and West Asia. Out of 265 doubled haploid lines derived from these crosses, 40 lines were evaluated at seedling and adult stages. Data showed significant differences among barley lines with a continuum of resistance levels ranging from highly susceptible to tolerant which were consistent during the two growth stages. Two promising lines were more tolerant to powdery disease than the others. Across lines, there was a high correlation between field and greenhouse reaction (r=0.80, P<0.01), indicating the utility of greenhouse evaluations for screening barley for powdery mildew. This study suggests that, the newly identified resistance lines can serve as potential donors for ongoing powdery mildew resistance breeding program, and both types of seedling and adult plant resistance identified here can offer promising genetic stocks for accumulating both resistances to acquire durable resistance and long lasting control against B. graminis in Mediterranean and similar environments.


Plant Disease ◽  
2013 ◽  
Vol 97 (3) ◽  
pp. 410-417 ◽  
Author(s):  
V. Troch ◽  
K. Audenaert ◽  
A. Vanheule ◽  
B. Bekaert ◽  
M. Höfte ◽  
...  

Triticale (×Triticosecale) is the intergeneric hybrid between the female parent wheat and the male parent rye. With the expansion of the triticale growing area, powdery mildew emerged on this new host and has become a significant disease on triticale. Recent research demonstrated that this “new” powdery mildew on triticale has emerged through a host range expansion of powdery mildew of wheat. Moreover, this expansion occurred recently and multiple times at different locations in Europe. An effective and environmentally sensitive approach to controlling powdery mildew involves breeding crop plants for resistance. The main goal of this study was to identify the presence of powdery mildew resistance in commercial triticale cultivars. First, the avirulence (AVR) genes and gene complexity carried by this new powdery mildew population on triticale were characterized. Virulence was identified for all the resistance genes evaluated in the present study, and virulence frequencies higher than 50% were recorded on the genes Pm3f, Pm5b, Pm6, Pm7, Pm8, and Pm17. Using molecular markers, the presence of resistance genes Pm3f and Pm17 was identified in certain triticale cultivars. The triticale cultivars were also evaluated for the presence of quantitative resistance at adult plant growth stages in a 2-year field experiment. Despite the high disease pressure, cultivars highly resistant at the adult-plant growth stages were identified. Because ‘Grenado’ also showed effective race-specific resistance, this cultivar could be of high value for breeding for durable resistance to powdery mildew. Altogether, this study reveals valuable information on the presence of powdery mildew resistance in commercial triticale cultivars, which can be used in breeding programs in triticale. Additionally, this study underscores the need to broaden the base of powdery mildew resistance in triticale through introgression and deployment of new sources of mildew resistance, including quantitative resistance.


Author(s):  
Mateusz Dyda ◽  
Mirosław Tyrka ◽  
Gabriela Gołębiowska ◽  
Marcin Rapacz ◽  
Maria Wędzony

Abstract Triticale is a cereal of high economic importance; however, along with the increase in the area of this cereal, it is more often infected by the fungal pathogen Blumeria graminis, which causes powdery mildew. The rapid development of molecular biology techniques, in particular methods based on molecular markers may be an important tool used in modern plant breeding. Development of genetic maps, location of the QTLs defining the region of the genome associated with resistance and selection of markers linked to particular trait can be used to select resistant genotypes as well as to pyramidize several resistance genes in one variety. In this paper, we present a new, high-density genetic map of triticale doubled haploids (DH) population “Grenado” × “Zorro” composed of DArT, silicoDArT, and SNP markers. Composite interval mapping method was used to detect eight QTL regions associated with the area under disease progress curve (AUDPC) and 15 regions with the average value of powdery mildew infection (avPM) based on observation conducted in 3-year period in three different locations across the Poland. Two regions on rye chromosome 4R, and single loci on 5R and 6R were reported for the first time as regions associated with powdery mildew resistance. Among all QTLs, 14 candidate genes were identified coded cyclin-dependent kinase, serine/threonine-protein kinase-like protein as well as AMEIOTIC 1 homolog DYAD-like protein, DETOXIFICATION 16-like protein, and putative disease resistance protein RGA3. Three of identified candidate genes were found among newly described QTL regions associated with powdery mildew resistance in triticale.


HortScience ◽  
2021 ◽  
pp. 1-6
Author(s):  
Fulya Baysal-Gurel ◽  
Ravi Bika

Ninebark (Physocarpus opulifolius) is a popular ornamental shrub and considered a hardy and tough plant that can thrive in different environmental conditions and resist diseases. However, powdery mildew, caused by Podosphaera physocarpi, can severelyaffect ninebark, deteriorating the ornamental value and making them unmarketable. Only a few studies have been done in managing powdery mildew of ninebark. The current study focuses on evaluating and identifying effective products (sanitizers, biorational products, and fungicides) for the management of powdery mildew disease of ninebark. A total of 12 treatments, including nontreated control, were studied. The experiment was arranged in randomized complete block design with four-single ‘Mindia Coppertina®’ ninebark plant per treatment and repeated twice. Powdery mildew disease severity, growth parameters, and phytotoxicity were assessed in the study. All treatments significantly reduced the powdery mildew disease severity and disease progress [area under disease progress curve (AUDPC)] compared with the nontreated control. The treatments, such as azoxystrobin + benzovindiflupyr at 0.17 and 0.23 g·L–1 total active ingredients (a.i.) applied, chlorothalonil + propiconazole at 1.12 mL·L–1 total a.i. applied, azoxystrobin + tebuconazole at 0.11 and 0.16 g·L–1 total a.i. applied, and giant knotweed extract [Reynoutria sachalinensis (0.5 mL·L–1 total a.i. applied)] were the most effective treatments in reducing disease severity and disease progress in both trials. The treatments had no significant effects on the plant growth parameters such as height and width. In Expt. 2, azoxystrobin + benzovindiflupyr and hydrogen peroxide + peroxyacetic acid treated plants showed the low level of phytotoxic symptoms. The phytotoxicity of these two treatments in Expt. 2 could be related to higher environmental temperature during the experimental period.


2016 ◽  
Vol 5 (1) ◽  
pp. 60
Author(s):  
Sinoya Chilasa ◽  
Vincent W. Saka ◽  
James M. Bokosi ◽  
Wilson A.B. Msuku

<p class="Normal1"><span>Pumpkin powdery mildews, a disease caused by fungus <em>Erysiphe cichoracearum</em>, is one of the major diseases that reduce yield and quality of pumpkins. A field screening study involving fifty two pumpkin accessions was carried out at three powdery mildew hot spot sites in Malawi. The main objective was to assess the reactions of pumpkin accessions to <em>E. cichoracearum</em>. The experiment was laid out in a randomized complete block design replicated three times. Plot size was 3m x 3. 7m. There were statistically significant differences in apparent infection rates (P&lt;0.001), area under disease progress curve, AUDPC (P&lt;0.001), percent disease index, PDI (P&lt;0.001) among the accessions across all sites. Pumpkin accessions 6 and 42 consistently showed slow rate of powdery mildew development at 4<sup>th</sup>, 6<sup>th</sup>, and 8<sup>th</sup> week after germination. A strong positive correlation (R= 0.7 at 8<sup>th</sup> week, and 0.97 at 12<sup>th</sup> week after germination) was observed between the number of rotten fruits and AUDPC. This study showed that out of the fifty two pumpkin accessions tested, none was immune to <em>Erysiphe cichoracearum</em>. However the accessions that recorded very slow rate of powdery mildew development showed high potential to maintain viable vines and support their fruits up to physiological maturity. We concluded that promoting slow mildewing pumpkin genotypes is appropriate solution to fruit yield and quality losses caused by<em> E. cichoracearum</em>.</span></p>


2009 ◽  
Vol 99 (10) ◽  
pp. 1121-1126 ◽  
Author(s):  
Caixia Lan ◽  
Shanshan Liang ◽  
Zhulin Wang ◽  
Jun Yan ◽  
Yong Zhang ◽  
...  

Adult-plant resistance (APR) is an effective means of controlling powdery mildew in wheat. In the present study, 406 simple-sequence repeat markers were used to map quantitative trait loci (QTLs) for APR to powdery mildew in a doubled-haploid (DH) population of 181 lines derived from the cross Bainong 64 × Jingshuang 16. The DH lines were planted in a randomized complete block design with three replicates in Beijing and Anyang during the 2005–06 and 2007–08 cropping seasons. Artificial inoculations were carried out in Beijing using the highly virulent Blumeria graminis f. sp. tritici isolate E20. Disease severities on penultimate leaves were scored twice in Beijing whereas, at Anyang, maximum disease severities (MDS) were recorded following natural infection. Broad-sense heritabilities of MDS and areas under the disease progress curve were 0.89 and 0.77, respectively, based on the mean values averaged across environments. Composite interval mapping detected four QTLs for APR to powdery mildew on chromosomes 1A, 4DL, 6BS, and 7A; these were designated QPm.caas-1A, QPm.caas-4DL, QPm.caas-6BS, and QPm.caas-7A, respectively, and explained 6.3 to 22.7% of the phenotypic variance. QTLs QPm.caas-4DL and QPm.caas-6BS were stable across environments with high genetic effects on powdery mildew response, accounting for 15.2 to 22.7% and 9.0 to 13.2% of the phenotypic variance, respectively. These results should be useful for the future improvement of powdery mildew resistance in wheat.


Author(s):  
Trương Thị Hồng Hải ◽  
Nguyễn Thị Diệu Thể ◽  
Phan Thu Thảo

In order to establish the pure line of sponge gourd containing aroma feature, we selected the desirable inbred lines by using a self-pollinating method. The present study was investigated to estimate the morphological traits and fruit quality of 6 sponge gourd inbred lines which generated at 4th generation of an aroma Luffa accession B29 under plastic house conditions. The experiment was conducted in a randomized complete block design (RCBD) with three replications, from May to November in 2016. Five plants per replication were examined. The results indicated that all inbred lines could grow well under plastic house conditions. The inbred lines had the same stem and leaf traits; whereas fruit shape, skin color and fruit veins color were observed differently among inbred lines. The aromatic trait was retained in all inbred lines either before or after cooking. The high yield was found in lines BC1 and BC2 by 10.1 tons/ha and 10.7 tons/ha, respectively. These inbred lines should be examined in open field condition to confirm the presence of aromatic trait and yield potential before completion of the procedures for recognition of new Luffa varieties.  


Forests ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 564
Author(s):  
Gaetano Distefano

The main challenges for tree crop improvement are linked to the sustainable development of agro-ecological habitats, improving the adaptability to limiting environmental factors and resistance to biotic stresses or promoting novel genotypes with improved agronomic traits [...]


Sign in / Sign up

Export Citation Format

Share Document